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We consider a timelike sweeping surface with rotation minimizing frames in Minkowski 3-
Space E

3
1. We introduce a new geometric “invariant”, which demonstrates the geometric

properties and local singularities of the surface. Subsequently, we give the sufficient
and necessary conditions for this surface to be a developable ruled surface. Finally, the
singularities of these ruled surfaces are investigated.
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1. Introduction

Singularity theory of curves is an active area of research in different branches of
mathematics and physics. In view of differential geometry, curves and surfaces are
represented by functions with one variable and two variables, respectively. In recent
years, singularity theory of curves and surfaces has become an important tool for
various interesting fields such as medical imaging and computer vision (see, e.g.
[1–5]).

As we know, the envelope of a family of sphere whose centers follow a space
curve is called a canal surface. It is traced by a one-parameter family of spheres
represented by the radius function and center curves: When the radius function is
constant, the canal surface is called a sweeping surface. There are several different
names of sweeping surfaces that we are familiar with, such as tubular surface,
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pipe surface, and string surface. Sweeping surfaces have important applications in
(CAD/CAM) such as shape reconstruction, and providing a way of constructing
the trajectory of the robots (see, [6–10]).

In 1975, Bishop [11] introduced a new frame called the alternative frame or
Bishop frame, which could provide the desired means to slide along a space curve.
It has become a useful tool for animations, motion planning, computer vision, and
related applications where the Serret–Frenet frame may prove unsuitable. For exam-
ple, it may be used to compute the shape of sequences of DNA using a curve
defined by the Bishop frame. The Bishop frame may also produce a way to con-
trol virtual cameras in computer animations [12–14]. Corresponding to the Bishop
frame in Euclidean 3-space, there exists a Minkowski version moving frame that is
named a Minkowski Bishop frame as applied to Minkowski geometry. If we study
a space curve, it is more convenient for us to apply the Minkowski version of the
Bishop moving frame as an important tool than the Serret–Frenet moving frame in
Lorentzian space. There exist a lot of papers dealing with Minkowski Bishop frame,
for example [15–17].

In this paper, we present the notion of timelike sweeping surfaces with rotation
minimizing frames in Minkowski 3-Space E

3
1. By applying singularity theory we

classify the generic properties, and present new invariant connected to the singu-
larity of this timelike sweeping surface. Then, the main generic singularity of this
sweeping surface includes the well-known cuspidal edge, swallowtail, and these are
characterized by this new invariant. Finally, to explain our results, we illustrated
some examples.

2. Preliminaries

We introduce in this section some basic notations on Minkowski space [18, 19]. Let
E

3
1 denote the three-dimensional Minkowski space, i.e. R3 equipped with the metric

〈dr,dr〉 = dr21 + dr22 − dr23 ,

where (r1, r2, r3) denotes the canonical coordinates in R3. We say that a nonzero
vector r ∈ E3

1 is spacelike, null, or timelike if 〈r, r〉 is positive, zero, or negative,
respectively. In addition, with a norm ‖r‖ =

√|〈r, r〉|, then the vector r is a space-
like unit if 〈r, r〉 =1 and a timelike unit if 〈r, r〉 = −1. Therefore, we say that a
smooth curve β : I → E3

1 is spacelike, timelike, or lightlike, if its velocity β′ is
spacelike, timelike, or lightlike, respectively. In a similar form, a surface is space-
like, timelike, or lightlike, if its normal vector is timelike, spacelike, or lightlike,
respectively. Given two vectors r, p ∈ E3

1, the inner product is the real number
〈r,p〉 = r1p1 + r2p2 − r3p3 and the vector product is defined by

r× p =

∣∣∣∣∣∣∣∣
f1 f2 −f3

r1 r2 r3

p1 p2 p3

∣∣∣∣∣∣∣∣ = ((r2p3 − r3p2), (r3p1 − r1p3),−(r1p2 − x2p1)),
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where f1, f2, f3 is the canonical basis of E3
1. For a fixed point p ∈ E3

1, and a positive
number c > 0, the hyperbolic and Lorentzian (de Sitter space) spheres, respectively,
are defined by

H
2
+(p, c) = {a ∈ E

3
1 | 〈a − p, a− p〉 = −c2}, (1)

and

S
2
1(p,c) = {a ∈ E

3
1 | 〈a − p, a− p〉 = c2}. (2)

We define

LC
∗
p = {a ∈ E

3
1 | 〈a − p, a − p〉 = 0} − {p}, (3)

and we call it the (open) lightcone at the vertex p. When p = 0 and c = 1, we
simply denote LC

∗
0, H2

+, and S2
1, respectively.

Let β = β(s) be a unit speed spacelike curve with spacelike principal normal
ζ2(s) represented by its arc-length s; by κ(s) and τ(s) are the natural curvature and
torsion of β(s), respectively. Let {ζ1(s), ζ2(s), ζ3(s)} be the Serret–Frenet frame
associated with β(s). The Serret–Frenet vector fields satisfy the relations:

〈ζ1, ζ1〉 = 〈ζ2, ζ2〉 = 1, 〈ζ3, ζ3〉 = −1,

ζ1 × ζ2 = −ζ3, ζ1 × ζ3 = −ζ2, ζ2 × ζ3 = ζ1.
(4)

Then the Serret–Frenet formulae read as follows:⎛⎜⎜⎝
ζ′1
ζ′2
ζ′3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 κ(s) 0

−κ(s) 0 τ(s)

0 τ(s) 0

⎞⎟⎟⎠
⎛⎜⎜⎝
ζ1

ζ2

ζ3

⎞⎟⎟⎠ = ψ ×

⎛⎜⎜⎝
ζ1

ζ2

ζ3

⎞⎟⎟⎠, (5)

where ψ(s) = −τζ1 + κζ3 is Darboux vector along the curve β. In what follows,
dash is differentiation with respect to s.

Definition 2.1. A pseudo orthogonal moving frame {ξ1, ξ3, ξ3}, along a non-null
space curve α(s), is called rotation minimizing frame or Bishop frame (RMF) with
respect to ξ1 if its angular velocity ω satisfies 〈ω, ξ1〉 = 0 or, equivalently, the
derivatives of ξ2 and ξ3 are both parallel to ξ1. An analogous characterization holds
when ξ2 or ξ3 is chosen as the reference direction.

According to Definition 2.1, we can see that the Serret–Frenet moving frame is
RMF with respect to ξ2, but not with respect to ζ1 and ζ3. Although the Serret–
Frenet moving frame is not RMF with respect to ζ1, one can easily obtain such a
RMF from it. New normal plane vectors (N1,N2) are determined through a rotation
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of (ζ2,ζ3) according to⎛⎜⎜⎝
T1

N1

N2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0

0 cosh θ sinh θ

0 sinh θ cosh θ

⎞⎟⎟⎠
⎛⎜⎜⎝
ζ1

ζ2

ζ3

⎞⎟⎟⎠, (6)

with a certain spacelike angle θ(s) ≥ 0. Here, we will call the set {T1, N1, N2} as
RMF or Bishop moving frame. The RMF vector satisfies the relations

〈T1,T1〉 = 〈N1,N1〉 = 1, 〈N2,N2〉 = −1,

T1 × N1 = −N2, N2 × N1 = −T1, T1 × N2 = −N1.
(7)

The angle θ specifies the difference between these two frames; it can be computed
from the integral formula

θ(s) = −
∫ s

s0

τds + θ0, (8)

where s0 is the initial value of the arc length. Generally, we put s0 = 0, so θ0 = θ(0).
Therefore, we have the alternative frame equations⎛⎜⎜⎝

T′
1

N′
1

N′
2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 κ1 −κ2

−κ1 0 0

−κ2 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

T1

N1

N2

⎞⎟⎟⎠, (9)

where ω̃(s) = −κ2N1 + κ1N2 is the Bishop Darboux vector. Here, the functions
κ1(s) = κ coshϑ, and κ2(s) = κ sinhϑ are called the Bishop curvature functions.
One can show that

κ2
1 − κ2

2 = κ2, and ϑ = tanh−1

(
κ2

κ1

)
; κ1 �= 0,

θ(s) = −
∫ s

s0

τds+ θ0, θ0 = θ(0).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10)

Consequently, the Serret–Frenet frame and the RMF are identical if and only if
β(s) is a planar, i.e. τ = 0. Now we define a Bishop spherical Darboux image
e(s) : I → H2

+, by

e(s) :=
ω(s)

‖ω(s)‖ =
−κ1√
κ2

1 − κ2
2

(
κ2

κ1
N1 − N2

)
. (11)

Therefore, we consider a new geometric invariant ρ(s) = κ1κ
′
2 − κ2κ

′
1.

Definition 2.2. A sweeping surface along β(s) is a surface defined by

M :R(s, u) = β(s) + F (s)x(u) = β(s) + x1(u)N1(s) + x2(u)N2(s), (12)
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where β(s) is called the (at least C1-continuous) spine curve, 0 ≤ s ≤ T , s is its arc
length parameter. x(u) = (0, x2(u), x3(u))T is called planar profile (cross-section)
curve and represented by x(u) = 0, u ∈ I ⊆ R and the symbol “T” means trans-
position. The semi-orthogonal matrix {T1(s), N1(s), N2(s)} = F (s) specifies the
RMF along β(s).

3. Timelike Sweeping Surface and Its Singularities

In this section, we present timelike sweeping surfaces in Minkowski 3-space E3
1. Con-

sider the planar profile curve given by x(u) = (0, sinhu, coshu). By using Eq. (12),
it follows that

M :R(s, u) = β(s) + sinhuN1 + coshuN2. (13)

By the formulae expressed in Eq. (9), we can calculate

Ru(s, u) = coshuN1 + sinhuN2,

Rs(s, u) = (1 − κ1 sinhu− κ2 coshu)T1.

}
(14)

The unit normal vector is

N(s, u) =
Rs × Ru

‖Rs × Ru‖=coshuN1 + sinhuN2. (15)

Note that ‖N(s, u)‖2 = 1 means that M is a timelike surface. The vital aim of this
work is the following theorem.

Theorem 3.1. Let β : I → E3
1 be a unit speed spacelike curve with a timelike prin-

cipal normal, and κ2
1 − κ2

2 �= 0. Then, for any fixed x ∈ H2
+(0, 1), one has the

following:

(A) (1) e = e(s) is locally diffeomorphic to a line {0} × R at s0 iff ρ(s0) �= 0;
(2) e = e(s) is locally diffeomorphic to the cusp C ×R at s0 iff ρ(s0) = 0, and

ρ′(s0) �= 0.
(B) (1) M is locally diffeomorphic to a timelike plane at (s0, u0) iff a1κ1(s0) +

a2κ2(s0) �= 0, where a1 and a2 are real numbers such that
a2
1 − a2

2 = −1.
(2) M is locally diffeomorphic to Cuspidal edge CE at (s0, u0) iff x = ±e(s0),

and ρ(s0) �= 0.
(3) M is locally diffeomorphic to Swallowtail SW at (s0, u0) iff x = ±e(s0),

ρ(s0) = 0, and ρ′(s0) = 0.

The proof will appear later.
Here, C×R = {(x1, x2)|x2

1 = x3
2}×R, CE = {(x1, x2, x3)|x1=u, x2=v2, x3=v3},

and SW= {(x1, x2, x3)|x1 = u, x2 = 3v2 + uv2, x3 = 4v3 + 2uv}. The pictures of
C × R, CE, and SW will be seen in Figs. 1–3.
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Fig. 1. CxR.

Fig. 2. CE.

Fig. 3. SW.

3.1. Hyperbolic Bishop height functions

Now, we will give two different types of Hyperbolic Bishop height functions which
will be important to study the singularities of M as follows: H : I × H2

+ → R, by
H(s,x) = 〈β(s),x〉. We call it Hyperbolic Bishop height function. We use the nota-
tion hx(s) = H(s,x) for any fixed x ∈ H2

+(0, 1). We can also define H̃ : I×H2
+(0, 1)×

R → R, by H̃(s,x, w) = 〈β,x〉 − w. We call it extended Hyperbolic Bishop height
function of β(s). We also use the notation h̃x(s) = H̃(s,x). From now on, we shall
often omit to indicate the parameter s. Then, we state the following fundamental
proposition.
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Proposition 3.1. Let β : I → E3
1 be a unit speed spacelike curve with a timelike

principal normal, with κ2
1 − κ2

2 �= 0. Then the following holds:

(A) (1) h′x(s) = 0 iff x = a1N1 + a2N2, and −a2
1 + a2

2 = −1.
(2) h′x(s) = h′′x(s) = 0 iff x = ±e(s).
(3) h′x(s) = h′′x(s) = h′′′x (s) = 0 iff x = ±e(s), and ρ(s) = 0.
(4) h′x(s) = h′′x(s) = h′′′x (s) = h

(4)
x (s) = 0 iff x = ±e(s), an ρ(s) = ρ′(s) = 0.

(5) h′x(s) = h′′x(s) = h′′′x (s) = h
(4)
x (s) = h

(5)
x (s) = 0 iff x = ±e(s), and ρ(s) =

ρ′(s) = ρ′′(s) = 0.
(B) (1) h̃x(s) = 0 iff there exist 〈β,x〉 = w.

(2) h̃x(s) = h̃′x(s) = 0 iff there exist a1, a2 ∈ R such that x =sinhuN1 +
coshuN2, and 〈β,x〉 = w.

(3) h̃x(s) = h̃′x(s) = h̃′′x(s) = h̃′′x(s) = 0 iff x = ±e(s), 〈β,x〉 = w, and
ρ(s) = 0.

(4) h̃x(s) = h̃′x(s) = h̃′′x(s) = h̃′′x(s) = h̃′′′x (s) = 0 iff x = ±e(s), 〈β,x〉 = w,

and ρ(s) = ρ′(s) = 0.
(5) h̃x(s) = h̃′x(s) = h̃′′x(s) = h̃′′x(s) = h̃′′′x (s) = h̃

(4)
x (s) = 0 iff x = ±e(s),

〈β,x〉 = w and ρ(s) = ρ′(s) = ρ′′(s) = 0.
(6) h̃x(s) = h̃′x(s) = h̃′′x(s) = h̃′′x(s) = h̃′′′x (s) = h̃

(4)
x (s) = h̃

(4)
x (s) = 0 iff

x = ±e(s), 〈β,x〉 = w, and ρ(s) = ρ′(s) = ρ′′(s) = ρ′′′(s) = 0.

Proof. According to Eq. (9) we have that ‖T′
1‖2 �= 0 iff κ2

1 − κ2
2 �= 0.

(A) (1) Since h′x(s) = 〈T1,x〉 = 0, and {T1, N1, N2} is RMF along β(s), then
there exist a1, a2 ∈ R such that x = a1N1 + a2N2. By the condition that
x ∈ H2

+, we get a2
1 − a2

2 = −1. The converse of the theorem also holds
true.

(2) Since h′′x(s) = 〈T′
1,x〉 = 〈κ1N1 − κ2N2,x〉 = 0, we have that a1κ1 +

a2κ2 = 0. It follows from the fact a2
1 − a2

2 = −1 that a1 = ∓κ2/
√
κ2

1 − κ2
2,

and a2 = ±κ1/
√
κ2

1 − κ2
2. Therefore, we have that

x =

(
= ± κ1√

κ2
1 − κ2

2

(
κ2

κ1
N1 − N2

))
(s) = ±e(s).

(3) Since h′′′x (s) = 〈T′′
1 ,x〉 = 〈κ′1N1 − κ′2N2,x〉 = 0, by the conditions of (2),

we have that

± κ1√
κ2

1 − κ2
2

(
κ′1κ2 − κ′2κ1

κ1

)
(s) = 0.

Therefore, h′x(s) = h′′x(s) = h′′′x (s) = 0 iff x = ±e(s), and ρ(s) = 0.
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(4) Since h(4)
x (s) = 〈T′′′

1 ,x〉 = 0, we have

〈3(κ′2κ2 − κ′1κ1)T1 + (κ1(κ2
2 − κ2

1) + κ′′1 )N1

− (κ2(κ2
2 − κ2

1) + κ′′2 )N2,x〉 = 0,

by the conditions of (3), we have that

± κ1√
κ2

1 − κ2
2

(
(κ′1κ2 − κ′2κ1)′

κ1

)
(s) = ±

(
κ1√
κ2

1 − κ2
2

ρ′

κ1

)
(s) = 0.

Hence, h′x(s) = h′′x(s) = h′′′x (s) = h
(4)
x (s) = 0 if and only if x = ±e(s), and

ρ(s) = ρ′(s) = 0.
(5) Since h(5)

x (s) = 〈T(4)
1 ,x〉0, we have

〈((κ2
1 − κ2

2)
2 + 4(κ2κ

′′
2 − κ1κ

′′
1 ))T1

+ (κ′′′1 + 5κ1(κ′2κ2 − κ′1κ1) + κ′1κ2
2 − κ′2κ2

1)N1

+ (κ′′′2 + 5κ2(κ′1κ1 − κ′2κ2) + κ′2κ
2
1 − κ′1κ

2
2)N2,x〉 = 0,

⎫⎪⎪⎬⎪⎪⎭
or

± 1√
κ2

1 − κ2
2

(
κ2κ

′′′
1 − κ1κ

′′′
2 − (κ′1κ2 − κ′2κ1)(κ2

1 − κ2
2)

κ1

)
= 0.

Hence, h′x(s) = h′′x(s) = h′′′x (s) = h
(4)
x (s) = h

(5)
x (s) = 0 if and only if

x = ±e(s), and ρ(s) = ρ′(s) = ρ′′(s) = 0.
(B) The proof of (B) follows from the proof of (A); so, we omit it.

Proposition 3.2. Under the same assumption of Proposition 3.1, we have ρ(s) = 0
if and only if

e(s) =
−κ1√
κ2

1 − κ2
2

(
κ2

κ1
N1 − N2

)
is a constant vector.

Proof. Assume that κ2
1 − κ2

2 �= 0. By simple computations, we find

e′(s) =
ρ(s)

(
√
κ2

1 − κ2
2)3

(κ1N1 − κ2N2).

Thus, e′(s) = 0 if and only if ρ(s) = κ1κ
′
2 − κ2κ

′
1 = 0.

Proposition 3.3. Under the same assumption of Proposition 3.2, we state the
following:

(a) β is a B-slant helix iff κ2/κ1 is constant.
(b) N1 is a part of a circle on H2

+ whose center is the timelike constant vector e0.

2150006-8
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Proof. (a) Suppose that ρ(s) = κ2κ
′
1 − κ1κ

′
2 = 0. Hence, we can write(

κ2

κ1

)′
=
κ1κ

′
2 − κ2κ

′
1

κ2
2

=
ρ(s)
κ2

2

= 0.

This means that κ2
κ1

=constant, that is, β is a B-slant helix.

(b) Let κ2
1 − κ2

2 �= 0. Since

〈e,N1〉 =
−κ1√√
κ2

1 − κ2
2

〈(
κ2

κ1
N1 − N2

)
,N1

〉

=
κ2
κ1√

1 −
(

κ2
κ1

)2
= const.

This means that N1 is a part of circle on H2
+ whose center is the constant timelike

vector e0(s).

3.2. Unfolding of functions by one-variable

Let us review some properties on the singularity theory (see [20, 21]). Let F : (R ×
Rr, (s0,x0)) → R be a smooth function, and f(s) = Fx0(s,x0). Then F is called
an r -parameter unfolding of f(s). We say that f(s) has Ak-singularity at s0 if
fp(s0) = 0 for all 1 ≤ p ≤ k and fk+1(s0) �= 0. We also say that f has A≥k-
singularity (k ≥ 1) at s0. Let the (k − 1)-jet of the partial derivative ∂F

∂xi
at s0

be j(k−1)( ∂F
∂xi

(s,x0))(s0) = Σk−1
j=0Lji(s − s0)j (without the constant term), for i =

1, . . . , r. Then F (s) is called a p-versal unfolding if the k × r matrix of coefficients
(Lji) has rank k (k ≤ r).

Now, we remind the definitions of some relevant sets about the unfolding related
with the above notations. The discriminant set of F is the set

DF =
{
x∈R

r| there exists s with F (s,x) =
∂F

∂s
(s,x) = 0 at (s,x)

}
. (16)

The bifurcation set of F is the set

BF =
{
x∈R

r| there exists s with
∂F

∂s
(s,x) =

∂2F

∂s2
(s,x) = 0 at (s,x)

}
. (17)

Then similar to [1–3], we give the following theorem.

Theorem 3.2. Let F : (R×Rr, (s0,x0)) → R be an r-parameter unfolding of f(s),
which has the Ak singularity at s0.

Suppose that F is a p-versal unfolding.

(a) If k = 1, then DF is locally diffeomorphic to {0}×Rr−1, and BF = ∅;
(b) If k = 2, then DF is locally diffeomorphic to C×Rr−2, and BF is locally dif-

feomorphic to {0}×Rr−1;
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(c) If k = 3, then DF is locally diffeomorphic to SW×Rr−3, and BF is locally
diffeomorphic to C×Rr−2.

Then, we have the following fundamental proposition.

Proposition 3.4. Let β : I → E3
1 be a unit speed spacelike curve with a timelike

principal normal, and κ2
1−κ2

2 �= 0. (1) If hx(s) = H(s,x) has an Ak-singularity (k =
2, 3) at s0 ∈ R, then H is a p−versal unfolding of hx0(s0). (2) If h̃x(s) = H̃(s,x, w)
has an Ak-singularity (k = 2, 3) at s0 ∈ R, then H̃ is a p−versal unfolding of
h̃x0(s0).

Proof. (1) Let x = (x0,x1, x2) ∈ H2
+, −x2

0 + x2
1 + x2

2 = −1, x0, x1, and x2

cannot be all zero. Without loss of generality, suppose that x2 �= 0. Then by
x2 =

√
x2

0 − x2
1 − 1, Therefore,

H(s,x) = −x0β0(s) + x1β1(s) +
√
x2

0 − x2
1 − 1 β2(s). (18)

Thus, we have that

∂H

∂x0
= −β0(s) +

x0β2(s)√
1 + x2

0 − x2
1

,
∂H

∂x1
= β1(s) − x1β2(s)√

1 + x2
1 − x2

2

,

∂2H

∂s∂x0
= −β′

0(s) +
x0β

′
2(s)√

1 + x2
0 − x2

1

,
∂2H

∂s∂x1
= β′

1(s) −
x1β

′
2(s)√

1 + x2
1 − x2

2

.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Therefore, the 2-jets of ∂H

∂xi
at s0 (i = 0, 1) are as follows: Let x0 = (x00, x10, x20) ∈

H2
+, and assume x20 �= 0, then

j1
(
∂H

∂x0
(s,x0)

)
=
(
−β′

0(s) +
x00β

′
2(s)

x20

)
(s− s0),

j1
(
∂H

∂x1
(s,x0)

)
=
(
β′

1(s) −
x10β

′
2(s)

x20

)
(s− s0),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (19)

and

j2
(
∂H

∂x0
(s,x0)

)
=
(
−β′

0(s) +
x00β2(s)
x20

)
(s− s0)

+
1
2

(
−β′′

0 +
x00β

′′
2 (s)

x20

)
(s− s0)2,

j2
(
∂H

∂x1
(s,x0)

)
=
(
β′

1(s) −
x10β

′
2(s)

x20

)
(s− s0)

+
1
2

(
β′′

1 (s) − x10β
′′
2 (s)

x20

)
(s− s0)2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)
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(i) If hx0(s0) has the A2-singularity at s0, then h′x0
(s0) = 0. So the (2 − 1) × 2

matrix of coefficients (Lji) is

A =
(
−β′

0(s) +
x00β

′
2(s)

x20
β′

1(s) −
x10β

′
2(s)

x20

)
. (21)

If rank(A) = 0, then we obtain

β′
0(s) =

x00β
′
2(s)

x20
, β′

1(s) =
x10β

′
2(s)

x20
. (22)

Since ‖β′(s0)‖ = ‖T1(s0)‖ = 1, we have β′
2(s0) �= 0, so that we have the

contradiction as follows:

0 = 〈(β′
0(s0), β

′
1(s0), β

′
2(s0)), (x00,x10, x20)〉 (23)

= −β′
0(s0)x00 + β′

1(s0)x10 + β′
2(s0)x20

= −x
2
00β

′
2(s0)
x20

+
x2

10β
′
2(s0)
x20

+ β′
2(s0)x20 (24)

=
β′

2(s0)
x20

(−x2
00 + x2

10 + x2
20)

=
β′

2(s0)
x20

�= 0.

Therefore, rank(A) = 1, and H is the (p) versal unfolding of hx0 at s0.
(ii) If hx0(s0) has the A3-singularity at s0 ∈ R, then h′x0

(s0) = h′′x0
(s0) = 0, and

by Proposition 3.2,

e(s0)=
κ1√
κ2

2 − κ2
1

(
κ2

κ1
N1 + N2

)
, (25)

where κ2
1 −κ2

2 > 0, ρ′(s0) = 0, and ρ′′(s0) �= 0. It is obvious that the (3−1)×2
matrix of the coefficients (Lji) is

B =

(
L11 L12

L21 L22

)
=

⎛⎜⎜⎝
−β′

0(s) +
x00β2(s)
x20

β′
1(s) −

x10β
′
2(s)

x20

−β′′
0 +

x00β
′′
2 (s)

x20
β′′

1 (s) − x10β
′′
2 (s)

x20

⎞⎟⎟⎠. (26)

For the purpose, we also need the 2 × 2 matrix B to be non-singular, which
always holds true. Actually, the determinant of this matrix at s0 is

det(B) =
1
x20

∣∣∣∣∣∣∣∣
−β′

0 β′
1 β′

2

−β′′
0 β′′

1 β′′
2

x00 x10 x20

∣∣∣∣∣∣∣∣ (27)
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=
1
x20

〈β′×β′′, e0〉

= ∓ κ1

x20

√
κ2

2 − κ2
1

〈
β′×β′′,

(
κ2

κ1
N1 + N2

)〉
. (28)

Since β′ = T1, we have β′′ = κ1N1 + κ2N2. By making use of these relations
in the above equality, we have that

det(B) = ∓
√
κ2

2 − κ2
1

x20
�= 0. (29)

This means that rank(B) = 2.
(2) As in (1), we have

H̃(s,x,x2) = −x0β0(s) + x1β1(s) +
√
x2

0 − x2
1 − 1β2(s) − x2. (30)

We require the 2 × 3 matrix

G =

⎛⎜⎜⎝
−β′

0(s) +
x00β2(s)
x20

β′
1(s) −

x10β
′
2(s)

x20
−1

−β′′
0 +

x00β
′′
2 (s)

x20
β′′

1 (s) − x10β
′′
2 (s)

x20
0

⎞⎟⎟⎠,
to have the maximal rank. By case (i) in Eq. (20), the second row of G does
not vanish, so rank(G) = 2.

Proof of Theorem 3.1. (1) By Proposition 3.1, the bifurcation set of H(s,x) is

BH =

{
κ1√
κ2

2 − κ2
1

(
κ2

κ1
N1 + N2

)
|s ∈ R|s ∈ R

}
. (31)

The assertion (1) of Theorem 3.1 follows from Propositions 3.1 and 3.4, and Theo-
rem 3.2. The discriminant set of H̃(s,x) is given as follows:

D
eH = {x0 = β + sinhuN1 + coshuN2|s ∈ R}. (32)

The assertion (1) of Theorem 3.1 follows from Propositions 3.1 and 3.4, and
Theorem 3.2.

Example 3.1. Given the spacelike circular helix: β(s) = (
√

2s, cosh s, sinh s), −1 ≤
s ≤ 1. It is easy to show that

ζ1(s) = (
√

2, sinh s, cosh s),

ζ2(s) = (0, cosh s, sinh s),

ζ3(s) = (−1,−√
2 sinh s,−√

2 cosh s),

κ(s) = 1, and τ(s) = −√
2.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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If θ0 = 0, we have θ(s) = −√
2s. Using the Eq. (2.9), we obtain

κ1(s) = cosh
√

2s, and κ2(s) = −sinh
√

2s.

Hence, the geometric invariant is

ρ(s) = −1.

The transformation matrix can be expressed as⎛⎜⎜⎝
T1

N1

N2

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 0 0

0 cosh
s

2
−sinh

s

2

0 −sinh
s

2
cosh

s

2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝
ζ1

ζ2

ζ3

⎞⎟⎟⎠.
Subsequently, we have

N1 =

⎛⎜⎜⎝
N11

N12

N13

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cosh
s

2
sinh s− 1

2
sinh

s

2
cosh s

√
3

2
sinh

s

2

cosh
s

2
cosh s− 1

2
sinh

s

2
sinh s

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

N2 =

⎛⎜⎜⎝
N21

N22

N23

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
2

cosh
s

2
cosh s− sinh

s

2
sinh s

−
√

3
2

cosh
s

2

1
2

cosh
s

2
sinh s− sinh

s

2
cosh s

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the timelike sweeping surface is (Fig. 4)

M :R(s, u) =

(√
3

2
sinh s,

s

2
,

√
3

2
cosh s

)
+ sinhu

⎛⎜⎜⎝
N11

N12

N13

⎞⎟⎟⎠+ coshu

⎛⎜⎜⎝
N21

N22

N23

⎞⎟⎟⎠.
The Bishop spherical Darboux image is (Fig. 5)

e(s) = −sinh
s

2

⎛⎜⎜⎝
N11

N12

N13

⎞⎟⎟⎠+ cosh
s

2

⎛⎜⎜⎝
N21

N22

N23

⎞⎟⎟⎠.

3.3. Singularities of developable surfaces

Developable surfaces are special cases of ruled surfaces. Developable surfaces are
widely used in the airplane wings, manufacture of automobile body parts and ship

2150006-13
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Fig. 4. Timelike sweeping surface with spacelike helix singularity curve.

Fig. 5. Bishop spherical Darboux image which has a cusp point.

hulls [1, 7]. Therefore, we investigate the case that the profile curve x(u) degenerates
into a line. Then, we have the following spacelike developable surface:

M :Q(s, u) = β(s) + uN2(s), u ∈ R, (33)

and the timelike developable surface

M⊥ :Q⊥(s, u) = β(s) + uN1(s), u ∈ R. (34)

Obviously, P(s, 0) = α(s) (resp. P⊥(s, 0) = α(s)), 0 ≤ s ≤ L, that is, the surface
M (respectively, M⊥) interpolates the curve α(s). We can also calculate that

M :Qs × Qu = (1 − uκ2)N1(s),

and

M⊥ :Q⊥
s × Q⊥

u = (1 + uκ1)N1(s).

Then we have M (resp. M⊥) is non-singular at (s0, u0) iff 1−u0κ2(s0) �= 0 (respec-
tively, (1 + u0κ1(s0) �= 0). Based on [22, Theorem 3.3], we can classify the singu-
larities of developable surface M by using κ2.

2150006-14
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Theorem 3.3. Let M be the spacelike developable expressed by Eq. (33). Then we
have the following:

(1) M is locally diffeomorphic to Cuspidal edge at (s0, u0) iff κ2(s0) = 0, and
κ′2(s0) �= 0;

(2) M is locally diffeomorphic to Swallowtail at (s0, u0) iff κ2(s0) �= 0, and
κ′
2(s0)

κ2
2(s0)

�= 0.

Proof. If there exists a parameter s0 such that κ2(s0) = 0, and u′0 = κ′
2(s0)

κ2
2(s0)

�= 0
(κ′2(s0) �= 0), then M is locally diffeomorphic to Cuspidal edge at (s0, u0). So,
assertion (1) holds. Also, if there exists a parameter s0 such that u0 = 1

κ2(s0)
�= 0,

u′0 = κ′
2(s0)

κ2
2(s0)

= 0, and ( 1
κ2(s0) )

′′ �= 0, then M is locally diffeomorphic to Swallowtail

at (s0, u0), assertion (2) holds.

Example 3.2. Based on Example 3.2, we have the following:

(1) If s0 = 0, then κ2(s0) = 0, κ′2(s0) �= 0. The timelike developable surface

M :Q(s, u) =

(√
3

2
sinh s,

s

2
,

√
3

2
cosh s

)

+ u

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
2

cosh
s

2
cosh s− sinh

s

2
sinh s

−
√

3
2

cosh
s

2

1
2

cosh
s

2
sinh s− sinh

s

2
cosh s

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

is locally diffeomorphic to the cuspidal edge, u ∈ R, see Fig. 6.
(2) If s0 = 0, then κ1(s0) �= 0, κ′1(s0) = 0. The spacelike developable surface

M⊥ :Q⊥(s, u) =

(√
3

2
sinh s,

s

2
,

√
3

2
cosh s

)

+ u

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cosh
s

2
sinh s− 1

2
sinh

s

2
cosh s

√
3

2
sinh

s

2

cosh
s

2
cosh s− 1

2
sinh

s

2
sinh s

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

is locally diffeomorphic to swallowtail, u ∈ R, see Fig. 7.
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Fig. 6. Timelike developale surface.

Fig. 7. Spacelike developale surface.

4. Conclusion

This paper studies the properties of timelike sweeping surface by setting up an
orthonormal RMF to each point of the spine curve. Then, some general results of
the singularity theory are used for families of function germs, and the main result
is proved. Also, conditions for a sweeping surface to be developable ruled surface
are derived. The similar problem addressed in this paper may be considered for
3-surfaces in 4-space.
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