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Abstract- In this paper, we introduce the notion of mixed weakly monotone property for two hybrid pairs (S, g) and (T, g)
each of them consists of multi-valued mapping S or T: X" — CB(X) and single valued mapping g: X — X defined on partially
ordered metric space and then we prove coincidence and common fixed point theorems for two hybrid pairs under different
contractive conditions. These theorems extend and generalize very recent results that can be found in [12] and many others.
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1. INTRODUCTION

In recent years there has been a growing interest in studying the existence of fixed points for contractive mappings
satisfying monotone properties in ordered metric spaces. This trend was initiated by Ran and Reurings in [16] where they
extended the famous Banach contraction principle in partially ordered sets with some applications to matrix equations.

The study of fixed points for multi-valued contractions using the Hausdorff metric was initiated by Nadler [15] who
extended the Banach contraction principle from single valued to multi-valued mapping. Later many authors developed
the existence of fixed points for various multi-valued contractions under different conditions. For details, we refer the
reader to [1, 3, 6, 7, 10, 18, 19, 21] and the references therein. Fixed point theory of such mappings has applications in
control theory, convex optimization, differential inclusion and economics.

Gnana-Bhaskar and Lakshmikantham [5] introduced the concept of coupled fixed point and proved some coupled
fixed point results under certain conditions in a complete metric space endowed with a partial order. They applied their
results to study the existence of a unique solution for a periodic boundary value problem associated with a first order
ordinary differential equation. Later, Lakshmikantham and C'iriC’ [13] established the existence of coupled
coincidence and coupled common fixed point results to generalize the results in [5].

Beg and Butt [4] have followed the technique of Bhaskar and Lakshmikantham and proved some coupled fixed point
results for multi-valued mappings in partially ordered metric spaces. For this purpose, they introduced a generalized

mixed monotone property for a set valued mapping.

1I. PRELIMINARIES

Throughout this paper, N will be a positive integer, M and P will be non-negative integers and

i,je A, =1{1,2,...,n}. Furthermore, X will denote a non-empty set and X " will denote the product space

n—times

X" =X x ... x X . Unless otherwise stated, "for all M and i" will mean "for all M>0 and iEAn",

respectively.
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Definition 2.1 A metricon X isamapping d : X x X — R satisfying, for all X,y,z e X :

@y dx,y)=0 < x=y;

d2) d(x,y)>0;

d3)  d(x,y)=d(y,x);

(4 d(x,2)<d(x,y)+d(y,z).
The last requirement is called the triangle inequality. If O is a metric on X , we say that (X ,d) is a metric space.
Definition 2.2 [8] A triple (X,d,<) is called an ordered metric space iff

i. (X,d) isametric space and,

ii. (X,X) is a partially ordered set.
Definition 2.3 [5] Let (X,d,<) be an ordered metric space. X is said to have the sequential monotone property if it
verifies the following properties:

i. If {X,} isan increasing sequence with X, — X then X, <X forall Ne N,

ii. If {Yy,} isa decreasing sequence with Y, — Y then Y, 2 Y forall Ne N.
Lakshmikantham and C'iric¢’ [13] introduced the following concepts for two single valued mappings
F:XxX —> X and g: X — X defined on partially ordered set (X,<).
Definition 2.4 [13] An element (X, y) € X x X is said to be

i.  coupled coincidence point of the mappings F and ¢ if gx=F(X,Yy) and gy = F(Y,X);

ii. coupled common fixed point of the mappings F and g if X=gx = F(X,y) and y =gy = F(Y,X).
Definition 2.5 [13] The mapping F has the mixed g-monotone property if F(X,y) is g —monotone non-decreasing
in its first argument and g — monotone non-increasing in its second argument, that is, for any X,y € X ,

X, X, € X, g(X;) < g(x,) implies F(X;,y) <F(X,,y)
and

Yi>Y> € X, g(y;) < 9g(y,) implies F(X,y,) 2 F(X,Y,).
If g is the identity mapping, we obtain the Bhaskar and lakshmikantham’s notion of a mixed monotone property of the
mapping F .
Definition 2.6 [2] The mapping F and ¢ are called W —compatible if g(F(x,y)) = F(gx,gy), whenever
gx=F(x,y) and gy = F(y,X).
Then Roldan et al [20] extended the previous notions by defining coincidence point between two mappings in any
number of variables. Fix a partition {A, B} of A, ,thatis, AUB=A, and ANB=O and o,,...,0,,7 be

mappings from A into itself. We will denote

Q,,={0:A, >A,:0(A)c A and o(B)c B}

and
Q,g={0:A, > A, :0(A)cB and o(B)c A}. (2.1)
If (X,<) is a partially ordered space, X,y € X , we will use the following notation
X<y, ieA
X<, Yy :
x>y, 1eB.

Inspired by the above notation, we endow the product space X" with the following order:
For (X',...,X") and (U',...,u") € X", we say
X' xM <, uM e x < Ul
Also we say that (Xl,...,Xn) and (ul,...,u”) are comparable if (Xl,...,Xn) < (ul,...,u”) or
(x',...,x")y>(u',...,u".
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Definition 2.7 [20] Let (X,<) be a partially ordered setand F : X" — X, g : X — X be mappings. We say that
F has the mixed g-monotone property if F is g-monotone non-decreasing in arguments of A and g-monotone non-
increasing in arguments of B , that s, for all X', x>,...,X",y,z€ X andall i.
gy <gz= F(x',...,x"7y,x"ox") < P T zox L xM.
Definition 2.8 [20] A point (X', X*,...,X") e X" is called
i - (1 2 .
i. N— fixed point of the mapping F if X' = F(XU'( ),. . XU'(m), Y
_ L , .
ii. N—coincidence point of the mappings F and g if gx' = F(XU'( ),. ey XU'(m), AWK

. . (1 . .
iii. N — common fixed point of the mappings F and g if X' =gx' =F X" ),...,Xa'(n) , VI
g

Theorem 2.1 [20] Let (X ,d, <) be a complete ordered metric space. Let ¢ = (o,,0,,...,0,,7) bea (n+1) -tuple

of mappings from A into itself such that 7 € Q,, ; is a permutation and verifying that o, € Q,  if i € A and
o, e, ifieB.Let F: X" > X and g: X — X be two mappings such that Fhas the mixed g -monotone
propertyon X , F(X") < g(X) and g commutes with F . Assume that there exists k €[0,1) verifying

ACF (X5 X X0 ), F (Y15 Va5 ¥i)) < Kmax d (9%, Y;) 22)

I<i<n

for which gX; <; gy; forall i . Suppose either F is continuous or X has the sequential monotone property. If there

. 1 n o
exist Xp,....X, € X verifying

M) o () 0@ o (n)
X, S F(XT X L X!

),Vi.
Then F and g have, at least, one N -coincidence point.

Let (X,d) be a metric space and CB(X) be the class of all nonempty closed and bounded subsets of X .
For A,B € CB(X), let

H(A,B) = max{supd(a,B),supd(b, A)},
acA beB
where

d(x,A)=infd(x,a).

aeA

H is said to be a Hausdorff metric induced by d . Let F : X x X — 2% (the power set of X ) be a set valued
mapping i.e, X X X 3 (X,Y)— F(X,Y) isasubsetof X .
Definition 2.9 [4] Let (X,<) be a partially ordered setand F : X x X — CB(X) be a set valued mapping. F is
said to be a mixed monotone mapping if F is order-preserving in X and order-reversingin Yy ie., X, <X,, Y, <Y,
, X, Y, € X(1=1,2) imply for all u, € F(X,,Y,) there exists U, € F(X,,Y,) suchthat u, <u, and for all
v, € F(Y,,X,) thereexists v, € F(Y,,X,) suchthat v, <v,.
Definition 2.10 [4] A point (X, y) € X x X is said to be a coupled fixed point of the set valued mapping F if
xeF(x,y)and y e F(y,X).
Definition 2.11 [1] Let F : X x X — CB(X) and g: X — X be hybrid pair of mappings. An element
(X,y) e X x X iscalled

i. coupled coincidence point of a hybrid pair F, g if gx € F(X,Y) and gy € F(Y,X);

ii. coupled common fixed point of a hybrid pair F,g if X=0Xx € F(X,y) and Y=gy € F(y,X).
Lemma 2.1 [15] Let A,B € CB(X) and « > 1. Then, for every a € A there exist b € B such that

d(a,b)<aH(A,B).
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Lemma 2.2 [15] Let A,B € CB(X) and a > 0. Then, for every a € A there exist b € B such that
d(a,b)<H(AB)+a.
In our recent paper [18], we give the following definitions for hybrid pair of set valued mapping with N — variable
and single valued mapping.
Definition 2.12 [18] Let (X, <) be a partially ordered setand F : X" — CB(X), g: X — X be mappings. We

say that F has the mixed ¢ -monotone property if F(x',...,X") is g -monotone non-decreasing in arguments of A

and @ -monotone non-increasing in arguments of B, that is, for any Xl,...,XH,Xi,Xi”,...,X”, yandze X we
have
gy <gz=FX',..x"Ly,x" L x") < B, x Tz x ML x™),

that is for any element U € F(Xl,...,XH,y,XM,...,Xn) and Ve F(Xl,...,XH,Z,XM,...,XH) we have U <, V.

Definition 2.13 [18] A point (X', X°,...,X") e X" is called
: (1 : .
i. N— fixed point of the mappings F if X' € F(XG'( ),...,x“'(”)),v I
; (1 : .
ii. N —coincidence point of the mappings F and g if gx' € F(XU'( ),...,XU'(n)), Vi

: : A
iii. N— common fixed point of the mappings F and ¢ if X' = gx' S F(XU'( ),. X

oj(n)

), Vi

In 2012, Gordii et al. [9] introduced the concept of the mixed weakly increasing property of mappings and proved
some coupled fixed point results.
Definition 2.14 [9] Let (X, <) be a partially ordered setand S,T : X x X — X be mappings. We say that a pair

S,T has the mixed weakly monotone property on X if forany X,y e X
X< S(X,Y), y = S(Y,X),
= S(X,Y) <T(S(X,¥),S(Y,X)) ,S(Y,X) 2T(S(Y,X),S(X,Y))

and

X<T(XY) » Y2 T(Y,X),
=>TOY)<STOGY)LTYX) 5 TY,X) 2 S(T(Y,X),T(X,Y)).

In [12], the authors obtained tripled coincidence and common fixed point results for two hybrid pairs consisting of
multi-valued and single valued mappings (S, g) and (T, Q) under two different contractive conditions.
Theorem 2.2 [12] Let (X,d) be a metric space, S,T: X X X X X - CB(X) and g: X — X be mappings such that
H(S(x, v,2), T(u,v, w)) < a,;d(gx,guw) + a, d(gy,gv) + as; d(gz, gw) + a, d(S(x,y,2),gx) +

as d(T(u,v,w), gu) + agd (S(x,y,2), gu) + a, d(T(u,v,w), gx), 2.3
Forall x,y,z,u,v,w € X, where a;,V i = 1,2, ...,7, are non-negative real numbers such that ¥7_, a <h<lIf
S(X®) UTX?) € g(X)and g(X) is complete subset of X, then (S, g) and (T, g) have tripled coincidence point .
Furthermore, (S,g) and (T,g) have tripled common fixed point if one of the following conditions holds for
some x,y,z €y(S,g) ny(T,g)and u,v,w € X. :

(@ (S,9) and (T,g) arew-compatible, lim g"x =u, lim g"y =u and lim g"z = w and g is continuous

n—-oo n—-o n-—oo

atu,v,w;

(b) if g?x = gx, g%y =y,g%z =2z and g is S, T- idempotent;

(c) giscontinuousatx,y,z andlim g"u=x, lim g"v=yand lim g"w=1z. .

n-oo n—oo n-oo
Inspired by the results of Roldan et al [20], Gordii et al. [9] and the previous result of Kutbi et al. [12], in this

paper we establish n- coincidence and n- common fixed point theorems for two hybrid pairs each of them consists of
multi-valued mapping with n- variable and single valued mapping under different contractive conditions by using the

notion of mixed weakly monotone property. Our results improve and extend all above results.
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IMI.  MAIN RESULT
First of all, we give the following definitions.
Definition 3.1 Let (X, <) be a partially ordered setand S, T : X" — CB(X) be mappings. We say that a pair
(S,T) has the mixed weakly g —monotone propertyon X ifforany x',...,x" € X

{gxi}si S(xTY, LX) Vi
o 1y ERPNG)! o (m@ Ty (my (M
) < T(Sx M Lx YTy, L s(x " x 1M

s ceey

o:(n)

= S(x,.. X7
and

(ox <, T, xT ™), i
o () o (1) % (1)(M %o, % (my(M
LX) S S(T(x yees X )yeres T(X s e X ).
Definition 3.2 The mappings S : X" — CB(X) and g : X — X are called W — compatible if
g(S(x',...,x") = S(gx',...,gx"), whenever (X',...,X") € 7(5,9) ynere 7(S-9) is the set of all n-

coincidence points of S and g.
Definition 3.3 The mapping g is called S — idempotent at some point (X',...,x") e X°
i (1) .
9°x e S(gxT,...,gx ™), Vi.
Now, we state our main results.

Theorem 3.1 Let (X,d,<) be an ordered metric space and (o,,0,,...,0,) be N—tuple of mappings from A
into itself and for which {o,(j), Viand fixed j}=A, ie, {6,(]),...,0,(})} =A,, forfixed j.Let
S,T:X"—>CB(X) and g: X — X be mappingssuchthat S and T have the mixed weakly g — monotone
propertyon X , S(X")UT(X") < g(X), T(or S)(X,,...,X,) < T(or S)(gx,,...,0%,), V
(X,...,X,) € X and g(X) is complete subspace of X . Assume that there exist non-negative real numbers

a; €[0,1), 1<i1<n+4 such that Z?:ai <h<1 and

=T,

HEET, L x ™ Tw ", a<n>))<za d(gx . gu™?)

oj (1) o’ (n) o (1) a' (n)
+a,,d(S(x" ), 9X )+an+2d(T(u ! ),qu’) (3.1
o (1) o‘ (n) o; (1) a' (n)
+a,,,d(S(x" y,gu)+a, ,dTu,.. ), 9x'),
for only comparable elements (X yeees X ) and (U yeeesU ) in X". Also assume that X has the sequential

o (1)

monotone property. If there exist X, € X , i € A, with {gX)} <, S(Xg! i (n)) or

X0
{gxg} < T(Xgim,.. a( )) then (S, Q) and (T, Q) have N— coincidence point in X . Furthermore, (S, Q)
and (T, g) have N— common fixed point if one of the following conditions holds for some
(x',...,x") eSS, 9)Ny(T,g) and (U',....u") e X":

(@) (S,9) and (T, Q) are W—compatible, limm_..g"X' =U', Vi and g is continuous at U', Vi ;

) if g°x' =gx',Viand g is S,T idempotent;

(c) g is continuous at X' and liMm—sco gmu‘ = Xi, Yi.

i (1
Proof. Consider {gx(')} < S(Xg i€ ), ,,( )) Using the mixed weakly g —monotonicity for S and T yields

Q)] (M @D m M
SO XMy < TSN x0T ST x AT,
o‘(n)

1
Then for gX1 € S(XG(),...,X ), we have
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S Lx3 ™y < T Lo Ty o T(x 1Y, xT )

_ (3.2)
= {gx} < TG ™),
and then,
1 o (n) o ) o (n)
o: (1) o’ (n) o’ (1) o (1) o;(n) o (n)
TX" ... )<, S(T(X peees Xy )yeees T(X, ! e Xy ).
That is, for gx; ET(XJi U(n)) we have
o’-(l) o;(n) o (1) o;(n)
TOO ™) < S0 x0 ) .
a'-(l) g (n) :
:>{9Xz} < SOGT L G ).
For gxli € {gxl'} and gx; ET(Xfi(l), a( )) by using (3.2) we get
gx]i < gX;- 34
. . . (1
Also, by (3.3), for gX; € {gX,} and QX; € S(X;'( ), Xy (n)) we have
gx} <; gXi. (3.5)
Continuing in this way, we can construct N sequences {gxi }in X for which
i oi (1) i (n) oj(1) AW
P €S(Ka eesXom )y oz €T Kyt Xamer ) (3.6)
and
ox! < ox!.,Vmandi. 3.7)
If & =0 forall i € A,,, then from (3.1)
dgx. TOC Y x ™) sHEEGY, "i(“)) TOC )1 ) =0,
d(9%.806" ") SHT Y, gt s05 g ) =0,
Imply that
g e T, x 1™y =T, x71 ")
and
gxt e SO, x5 My = s xS
forall i € A, . Hence (X/,...,X") and (X},..., X)) are N— coincidence points of pairs (T, Q) and (S, Q).
respectively. So we assume that &, > 0 forsome i in {1,...,n+4} which gives that 0 <h <1.
Now we apply Lemma 2.2 and then contraction condition (3.1) to can say that for gX2m 4 € S(X '(]) X " )) there

. i o; (D)
exist OXymi0 €T (Xopiyse- o 2m+1) such that for all i and M

61



MAYFEB Journal of Mathematics - ISSN 2371-6193
Vol 1 (2017) - Pages 56-71

2m+1
o (1) 0' (n) (1) cr (n)
d (gX2m+l ’ gX2m+2) < H (S(X : . ) T(X2r|n+1 bR 2m+1 ))

n
Z oi (D oi (1) ai (1) x i (n)
< ajd(gXZrln > gXZI‘II’Hl )+ an+1d(s(x LR ) gXZm)
=1

o (1) a' (n) o (1) o‘ (n)
+ an+2d(T (X2r|n+1 EA 2m+1 ) gx2m+1) + an+3d(S(X I ) gx2m+1)
2m+l1
o () aj(n) i
+ an+4d (T (X2r|n+1 >° X2r|n+1 gXZm ) + 2n
- 5 (i) () (3.8)
< zajd(gxzriq X2r|n+1 )
j=1
i i i i
+ an+1d (gx2m+1 4 gx2m ) + an+2d (gX2m+2 H gX2m+1)
2m+l1
+ an+3d (gXI2m+1 ’ gx'2m+1 ) + a‘n+4d (gXI2m+2 s gXIZm ) + 7
5 5 2
o; o; i i
(1 - an+2 - an+4) d(gX2m+1 2 gX2m+2) < Za d(gX I 2 gX2r|n+1 ) + (an+1 + an+4)d (gX2m+1 3 gXZm ) + n
Now we interchange the role of S and T in (3.1) to get
2m+1
i i o: (1) oj (n) oj (1) o (n) h
d(gxémz’gxému)SH(T(X2r|n+15-~ 2m+1)S(X seees Xy ' ))"'T
3 () () e
i i o (j o (j i i
(l_an+1_an+3)d (gxém+1’gxém+2) Z d(gX I ’gX2r|n+1 )+(an+2+an+3)d (gX;m+1’gX;m)+ (39)
Adding over all | in (3.8) and (3.9), this gives
oi () o ()
(1_ an n+4) Zd(gx 2m+1 gX m+2) < Z(Za d(gX I > gX2r|n+1 ))
. . 2m+1
(B +8p,) D (OXop 5 P ) + (3.10)
I 2m+1
(1- Ann — an+4) 52m+1 = (Za +a,t a‘n+4) 2
and
2m+l
(1 —a,, - an+3) é‘2m+1 < (Zai Tan T8 )§2m + ) (3.11)
i
Again, from (3.10) and (3.11)
2m+1
(2 —Q,, — 8, 85— an+4)52m+1 < (2Zai +a, ta,, ta, 5+ an+4)52m +h
2Zai +a,, A, T+, fh2m! (3.12)
52m+1 < - é‘2m +
2- Ay~ — Ay 3~ Ay, 2- Ay — &y, — 83—,
Since,
Zai + a‘n+1 + an+2 + an+3 + an+4 < h <l =
i
223" + an+1 + an+2 + an+3 n+4 = 2h (an+1 n+2 + an+3 + an+4)
< 2h h(anﬂ an,, T8, + an+4) = h(2 —a,, — &, —8n;3 an+4) =
zzai + an+1 + an+2 + an+3 + an+4
' <h,
2- Ang 8y, — 8,5 —8ny
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and @, +4a,,,+a,,,+a,,<lthen2-a, , —a,,—a,5,—a,,>1,thatis

1

< 1. Thus from (3.12), we obtain
2- Ay ~ 8y T 8n3 8y
Syna NSy, +h7™ (3.13)

By similar way as above, applying Lemma 2.2 and then contraction condition (3.1) yield that for

CAO) <7( ) o (D) oj(n)
Omis €T (Xohyses Xomyy ) there excist @Xo 5 € S(Xomss-+-» Xom2 ) such that for all i and all M

h2m+2

i i o (1) 0' (n) o; (1) o- (n)
d (gxl2m+2’ gXI2m+3) < H (T(X2r|n+1 s 2m+1 ) S(X2r|n+2 LA 2m+2 ))

>

a;(]) (H
Za d (gX2r|n+1 ’ 2r|n+2 ) + an+ld (gX2m+2 4 gX2m+1)

i=1

n+2d (gxl2m+3 H gX;m+2) + an+3d (gxl2m+2 ’ gxl2m+2) (3 . 14)
2m+2
i i
+ an+4d (gX2m+3 > gx2m+1) +t—
2n
i i : SN a2
i i g
(1 —a,, — an+4) d (gX2m+2 > gx2m+3) < Zaj d (gxzém > 2rln+2 ) + (an+l + an+4)d (gX2m+2 > gX2m+l ) + m
Also, we have
d(ax i < H(S(x® 5 Ty i o h2m+2
(gx2m+39 gX2m+2) - ( (X2m+2"‘ 2m+2) (X2m+1 LA 2m+l ))
n
oi () oi ()
< Zaj d (gxzrln+2 5 2r|n+1 ) + an+1 d (gX2m+3 > gx2m+2)
+ an+2d (gXI2m+2 s gXI2m+1 ) + an+3 d (gXI2m+3 > gXIZmH ) (3 15)
2m+2
+ an+4d (gX;m+2 b gX£m+2 ) +
2n
i i : SN 2
i i O
(1 T an+3) d (gxzm+2 > gx2m+3) < Zaj d (gX2r|n+1 > OXomez ) + (an+2 +a,;3 )d (gxzm+1 > gx2m+2) +
Adding over all i in (3.14) and (3.15), this gives
oi (i) oi ()
(1 - a'n n+4) Zd (gX2m+2 4 gx2m+3) Za zd (gX2r|n+1 ’ 2r|n+2
2m+2
+ (an+1 + an+4)zd (gX;mH > gX;m+2) + T (3.16)
i
h2m+2
(1- Aypn — an+4) 52m+2 = (Za T8, T8, )§2m+1 T
and
h2m+2
(1 —a,, an+3) 52m+2 < (zai +a,, ta,; )52m+1 + b . (3.17)
i
Again, from (3.16) and (3.17)
2Zai + a‘n+1 + an+2 + an+3 + a h2m+2
S <— 5 +
ame2 2-a, , —a, ,—a.—a ™ 2_a . -a.,-a.—a (3.18)
n+1 n+2 n+3 n+4 n+1 n+2 n+3 n+4
<hs,,, +h*™?,
From (3.13) and (3.18)
Spu <hs, +h™, (3.19)
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Continuing this process, we obtain

8., <hs,+h™
<h(hs,_, +h™")+h™!
<h2(h L +h™*)+2n™ (3.20)

< h'“”50 +(m+1)h™",
By repeatedly use of triangle inequality, for every m, p € N with P> M, we obtain

2d(@%,.9%,) <D 1d(9x, 9% + ...+ A(9X,, 9X;)]
<h"5, +(m)h"™ +...+h?'5, +(p-1)h""
p-1
<> [h's, +Ih'].
I=m
Since h <1, we conclude that {gX' } are Cauchy sequences in g(X) which is complete then there exist X' € X
such that _ _
OX,, = gx' asm — oo, (3.21)
Using (3.7) and (3.21) and having in mind the properties on X then gxi < gxi From (3.1) we get
d(gd . T, X ™)) <d(gx, g, )+ HSOSH xS ™), T (X, xT™)
<d(gx", gx2m+])+2a d(gron ., ox7")

Md<s<x e XMy gxd )+, L,d(T(xTY, ), gx')
d(S(x“'“),.. X", gx>+an+4d<T(x“"” “”) 0%,)  (322)

o‘ (n)

n+3

<d(gx, gx;m+1)+2a,-d(gx L)

o (l) U (n))

+an+1d(gxzm+1’ gx2m)+an+2d(T(X gX )

M XCi (n)
+ aMd(gxml, gx )+ an+4d(T(x L gxzm)
On taking limit as M —> o0, we get
d(g, T, X)) < (@, +a, AT, X ), 9x,)

0' (n)

which yields to d(gx T(Xa,(l) ¥ (n))

)=0 and gx' € T (X '() ), Vi . Similarly we have
o'l(l) o‘ (n) o‘l(l) o‘ (n) o (1) o’ (n)
d(S(X ERR ) gX ) < H(S(X ) T(X2m+1"' 2m+1 )+d(gxzm+2’ gX )

ai(J)

< d (gX;m+2’ gxi ) + zajd (gxai(j)’ gx2r|n+1
j=1

(3.23)
nﬂd(S(x“'“) ““”) X))+ 8,50 (P2 PXorsr)
8,0 XT), 9K ) + 8,40 (QK 00 OX).
As M —> 00, we have
d(sx1 . xT™), gx ) < (@, +a,,)d (ST, xT ™), gx).

Thus, (X',...,X") isan N— coincidence point for the pairs (S, g) and (T, Q).
Suppose that (@) holds, by induction we can prove that (g*X',...,g*x™) € #(S,9) N (T, Q) forall

k>0.Since S and T are W— compatible and (X1 »X") e y(S,9)Ny(T,Qg) then we have forall i,

o‘ (n)) oj (n))

gx e S(xT,.., gx eT(x7V,.. x7

and
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g, x1 ) S(gx 1,
gT(x ...,

So

o; (n)

9°x" e S(gx",..., gx

Thatis (gX',...,gx") € #(S,9) N ¥(T,g).1f (g*x',..
get forall i,

LgxM e

(1) k(N k+1

e, X
) T (gx"

), g2x eT(gx"
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a'-(n))
b

o;(n)

yers QX

).

o (n)

e, XU,
7(S,9)Ny(T,Qg) forsome K >0 then we

@ ki (M

g“'x e S(g*xT .., g" X)), g* X% eT(g"x7",. . g" xT™) (3.24)
and
g(S(g*x™".....g"x"™) = 8(g X, g" X,
kXUi(l),”.’ kXO'i(n) g-]— k+1X0'i(1)’”.’ k+1X0'i(n) )
g(l(g g g g
So
gk+2xi c S(gk+1X0i(1)"”,gk+1XUi(n))’ gk+2xi ET(ngXai(l),.,,,gk+1XUi(n)),

Thatis (g"X',..
these give

59"x") e 7(S,9) N y(T,g), VM. Also,as g"X' —U' and g is continuous at u*, Vi,

U'=1img™"'x' = lim g(g"x)=gu'.

m

m—»co gMx! >u!

Now we prove that {Q my' } are monotone sequence (decreasing or increasing) for all i . Since

Xffi(n)

gx' e ST xT ™) then {gx'} <, S(xTY,.,

), which implies

S(Xgi(l) X'Ti(n) < T(S(X%i(l)m X%i(l)(n)) S(X%i(n)“) X%’i(n)(”))) (3.25)
yeuns < seens yenns yeres . .
Then by (3.24) and (3.25)
o (1) o:(n) o: (1) o;(n)
SXT L, x ) S T(ox L gx )
= {gx"} < T(ox .. ox ") (3.26)
— gxi < gZXi
< .
Again by monotonicity for S and T we have
o (1) o (n) % ()M % (1)(M 5. (D % (n)(M
Tox " ,..,ox V)<, S(T(gx V7 ,...,0x ! )yeees T(QX T ey OX ). (3.27)
From (3.24) and (3.27)
T o; (1) cj(n) < S 2,0 2,,0(n)
(@x ", ox ) < 8(g7x L, gTx )
= {g°x'} <. S(g*x7Y, .., g2x1™) (3.28)
= g°x' < g°x.
Continuing in this way we can get
g"x'°,g™'x' vmand i. (3.29)

Therefore, for each i, {Q mXi} is monotone sequence and converges to u' then g" X' < gui .

m-1

Now we apply (3.1) with X=U and U=(Q " X

dsum™,...,u™),gu’) <HESUY,...,

<Yad(gu”,g"x" )
-1
+a,,dSum™,..u ™) gu') +

(1 :
+a ,dSua?,.. u™

o (1) o ()
e Lu

Hence gu' € S(u ) . Consequently,
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Ugi(n)),T(g m*IX'Ti

(e))
oo

5g" X)) +d(g"x', gu'))

an+2d(gmxi,gmflxi) (3'30)

%,9™"'x)+a,,,d(@"x',gu') > 0asm— .
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o (n)

1)
ye, U

).

u'=gu' eSu”
Similarly

o;(n)

u=gu eT ™. ,u™y.
Suppose that (b) holds. Since g is S,T idempotent for some (X',...,X") € #(S,9) N y(T,g) and g°x' = gx',

we have
gx' = g°x e S(gx",...,gx ™)

and
gx' = gx e T(gx ..., gx ™).

Finally suppose that (C) holds. Since g is continuous at X' for some (X1 X' € 7(S,9)Ny(T,Q9) and

limn. 9™u' = X', Vi then

X' =1limg™'u' = lim g(g"u')=gx".
n—oo gmuiaxi
Hence
X =gx eS(xT,.. xT ™)
and
X =gk eT(x ... xT™).

Corollary 3.1 Let (X,d,<) be an ordered metric space, S,T : X* — CB(X) and g: X — X be mappings such
that S and T have the mixed weakly g — monotone propertyon X , S(X*)UT(X?) < g(X),
T(or S)(X,y,2) < T(or S)(gx,09y,gz),forany X,y,ze X and g(X) is complete subspace of X . Assume
that there exist non-negative real numbers @;,1=1,2,...,7 such that Zillai <h<1 and
H(S(x,y,2),T(u,v,w)) <ad(gx,gu)+a,d(gy,gv)+a,d(gz, gw)
+a,d(S(x,Y,2),9x)+a,d(T (u,v,w), gu) (3.31)
+a,d(S(x,Y,2),gu)+a,d (T (u,v,w), gx),
forall X,Y,Z,U,V,We X ,where gX< gu, gy > gV, gZ < gW. If there exist X,, Y,,Z, € X with
[ {9%} < S(Xo,Y0520), {9Yo} 2 S(¥o,Z45X%,) and {92y} < S(Z,,X,,Y,) | or
[{0%0) ST (Xg,Y0520), {9Yo ) 2 T(Yy, 245 %,) and {92} <T(Z,,%,,Y,) 1.
Then (S, Q) and (T, Q) have tripled coincidence point, that is there exist (X,Y,Z) € X such that
gxeF(x,y,2), gy e F(y,z,X) and gz € F(z,X,Y).
Moreover (S, Q) and (T, g) have tripled common fixed point (i.e., (X, Y, Z) € X ? such that
x=gxeF(X,y,2), y=9y e F(y,z,X) and Z= gz € F(Z,X,Y)) if one of the following conditions holds for

some (X,Y,2) € y(S,9)ny(T,g) and u,v,we X :
a) (S,9) and (T, Q) are W—compatible, limn»9"X=U, limns» 9"y =V and
limnoeo g”z =W and g is continuous at U,V,W;
b) if g°X=0X, g°y =0y and §°Z=0Z and g is S,T idempotent;

¢) g iscontinuousat X,Y,Z and limn. §"U= X, limasx 9"V =Y, limn §"W=Z.

Proof. Consider N =3, A is the set of odd numbers in A; and B is the set of even numbers. Define

(0,,0,,0,):A; > A; by

1 23 1 2 3 1 23
o, = , O, = and o, = .
1 23 2 31 31 2
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Hence, Corollary 3.1 follows from Theorem 3.1 and the definition of tripled coincidence and common fixed point
follows directly from Definition 2.13.

Remark 3.1 Corollary 3.1 is the ordered version of Theorem 7 of Kutbi et al. [12]. Note that Theorem 2.1 is not useful
here because under previous choice for &, and o; we have o; isnotin Q, g orin Q' g.

Theorem 3.2 Let (X,d, <) be an ordered metric space and (o,,...,0,) be N—tuple of mappings from A into
itself. Let S, T : X" — CB(X) and g : X — X be mappingssuchthat S and T have the mixed weakly g —
monotone property on X , S(X")UT(X") < g(X), T(or S)(X,...,X,) < T(or S)(gX,...,0%,), V
(X;5---,X,) € X and g(X) is complete subspace of X . Assume that there exists a non-negative real number h <1
such that

HEE,x™), T, u™) < hmax{d (¢, gu™™), ... d(gx™™, qu™™),
d(S(x,. . xT1 ™), gx, d(T?,..,u ™), guh), (3.32)
o; (1 on an
d(s(x . xT™), gu)+dT .. u ™), gx)}
2

for (Xl,...,Xn) and (ul,...,u”) in X", where gxi < gui . Also assume that X has the sequential monotone

property. If there exist X, € X,i € A, with {gxf)} < S(Xgi(l),.. o X G( )) or {gx 1< T(Xa(l) 0( )) then

(S,9) and (T, Q) have N— coincidence point in X . Furthermore, (S, g) and (T, Q) have N— common ﬁxed
point if one of the conditions (@), (D) or (C) of Theorem 3.1 holds.

o;(n)

i (1
Proof. As in Theorem 3.1, we begin with {gX,} <; S(X;' , i ,X,' ) and use the mixed weakly g — monotone

property for S and T to construct sequences {gX.. } forall i while
o) o) &) o ()

OX . €SOG L xY, gx, L eT(XE L, Xt ) (3.33)
and
X, <; gXb,,, vV mand i, (3.34)
If h=0and (3.32), then
d(@d,TOC,ox ™) <HEEEY, L oxi ™), T, L)) =0,
d(@, SO, ) ) <HT T, ™), 8061, X1 M) =0,

Imply that
o o i o: (1 o; .
gx e T, x71 ™y and gxt eSO, xT ™), Vi
Hence (X/,...,X) and (X},..., X)) are N— coincidence points of pairs (T, @) and (S, Q). respectively. So we

1
assume that N >0 and k = ﬁ >1.
1
Now we apply Lemma 2.1 and then contraction condition (3.32) to can say that for gX2m € S(XU'( ), X " )) there
(1
exist gX}, ., € T(X2r'n(+1),.. 2r'n(+1)) such that for all i and M
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e oj n) oj S n)
d (gX 2m+lﬂgx 2m+2) < kH (S (X (1)7 3 2m( ) T (X 2m(+11)’ 2m(+l )) \/7
max{d (gx 75", gx 72,8 (9X 5" gX D),

o: (1) o; (n) o: (1) oj (n)
d (S (X : ERRR ] 2m ) gXZm) d(T (X2rln+1"‘ 2m+1 ) gX2m+1)

O X 0Ly ) 8T X5 i),
> (3.35)

o (n)

<~/h max{d (gx 1" gx i), d (gx g™ gx i),

d (gX 2m+12 gX ;m+1)+d (gX;m+2’ gx;m )}
2

S \/Hmax{d (gX ;m > gX ;m+1)9""d (gX ;m ’gX ;m+l )9d (gX ;m+2’ gX ;mﬂ)}'

If rnax{d (gxém H gxémﬂ )7 R d (gxgm H gxgmﬂ)’ d (gX;erzﬂ gX;mﬂ)} = d (gximﬂ b gxi2m+1) 4 then (3'35) =

i i _ . i o; (1) U (n)
d (gx2m+1 > gX2m+2) =0 > 1.C., gX2m+1 € T(X2r|n+l LA 2m+1 ) v I Therefore

d (gX;mﬂﬂ gx;m+2) < \/Hmax{d (gX2m> gX2m+1) o d(gX;m, gX;mH)}' (3-36)

1 1
Also for gX2m+2 € T(sz(n)a ;Tmil)) there exist ngm+3 € S(szi;, r'n(+2)) such that for all i and M

o (1) 0' (n) o (1) o:(n)
d(gX2m+2’gX2m+3) S kH(T(X2rIn+1 > 2m+1 ) S(X2r|n+2"' 2r|n+2 ))
o (1) o (1) o:(n) oj (n)
<R matd (@) ). 0o gH ) R )
d (gX2m+2 > gX£m+2) + d (gXI2m+3 > gX;m+1 )}
2

d (gX ;mﬂ’ gX ;m )’d (gX ;m+25 gX ;m+1),

d (gxi2m+2 > gxi2m+1 )9 d (gxi2m+3 H gxi2m+2 )’
S \/Hmax{d (gX;mH H gx;m+2 )" ce d (gX;mH > gx;m+2 )} .
Using (3.36) and (3.37) we get for all |
i i 1 1 n n _
d (gxmﬂ ng+1) < \/ﬁmax{d(gxm—l’ ng):' cc d(gxm—U ng)} - \/ﬁam—l' (338)
Consider 5, = max{d(gx},gx! ),...,d(gx",gx" )} =d(gx.,gx! ) for some i € A, . Thus from (3.38)
5m S \/Hé‘m—l
< 2
<h)"s,.
For m,pe N with P> M, we have
d(9%,9%,)  <[d(GXps Pyy) +-..+ (X, 1, 9X;)]
<[+ +(h)*s,
p-1 _
<>'hy's,.

Since h <1, we conclude that {gX! } are Cauchy sequences in g(X) which is complete then there exist X' € X
such that
gX,, = gx' asm — oo (3.40)

Using the sequential property on X , (3.32), (3.33), (3.34) and (3.40), all will give ng < gx and
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d(gd', T, xT ) <d(gx, 90X, )+ H SO, x ™), T, ™)
<d(gx', gx2m+l)+hmax{d(gx;“),gx“'(”) d(gx" ™ , OX Y d(ngmH,ngm), (3.41)
i a'l(l) o‘(n)
d(T(XU (1) a (n)) gX ) d(gXZmH, gX )+d(T(X geee ) gXZm)}

2
By taking limit as M —> 00, we get

d(gx', Tx,...,xT ™y =0.
), Vi . Also we have
dsx,..., ‘””)) ox') <HESM L xXTT) T e X)) + A (QKepye5 9X)
< hmax{d(gx', gxzmﬂ) SA(OX", 9%n)s

a' (n)

i (1
Hence, gX' ET(XG'()

d(S(x”‘“),.. XY, gx), d (gX, 0 X ), (3.42)
d(S(XUi(l) X (n)) gxzm+1)+d(gx2m+2,gx )}
2
a(n)

At N = 0, we obtain gX' eT(XUi(l)
(S,9) and (T,9).
Suppose that (@) holds, by Theorem 3.1 we have, U' = gu', Vi and
myl

(9™x',...,g"x") e #(S,9) N y(T,g), V M. Hence,

m+1 |

g ES(g X ,(1), ’gmxo'l(n)) gm+l |€T(gm 0'(1)’ ,gmxo'l(”)) (3.43)

), V i. Thus (X ..,X") isa N— coincidence point for the pairs

Also we can get
g"x' <, g™'x', Vmand i. (3.44)

Therefore, {gkxi} is monotone sequence and converges to u' then g % < gu‘ .

m-1

Now we apply (3.32) with X=U and U=(Q " X

dSE, L uT ™), gu) <HESUY . uT ), T @™ XYL g™ X)) +d(g"x', gu'))
shmax{d(gu Gl gmxTi®y ...,d(gu”("),gmx”'(")) dsu ™, u ™), guh),  (3.45)
o o dS T, uT ™), g™ XY +d(g"x', gu’ i
d(gx’, g™ x), I L9 OO0 (g gu)

—>0asn— ow.

O 0()
geue

Hence gu' € S(u” ) . Consequently,

(1 X
ut=gu es,..uT™).
Similarly
ut=gu eT ... u™).

If (b) or (C), we can prove the existence of N— common fixed point as in Theorem 3.1.

Corollary 3.2 Assume same hypothesis of Corollary 3.1 but replace Condition (3.31) with another one. For 0 <h <1,

H(S(x,y,2),T(u,v,w)) <hmax{ d(gx,gu),d(gy,gv),d(gz,gw),d(S(X,Y,z),gx),d(T (u,v,w),gu),
d(S(x,y,2),gu)+d(T (u,v,W),QX)}
: .

Then we have the same results.

Remark 3.2 Corollary 3.2 is the ordered version of Theorem 8 of Kutbi et al. [12].
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