
Journal of Advanced Studies in Topology 8:1 (2017), 31–58

On coupled coincidence and common fixed
point theorems for different types of mappings
satisfying rational type contractions in
b−metric spaces
R. A. Rashwana,∗, S. I. Moustafaa

aDepartment of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt.

Abstract

In this paper, we study the existence and uniqueness of coupled coincidence and common fixed points
for single-valued and fuzzy mappings under contraction condition of rational type in b−metric spaces and
obtain the corresponding results for hybrid pair of single-valued and multi-valued mappings. We consider
b−metric space with a partial order and prove the existence of coupled coincidence and common fixed
points for two single-valued mappings.
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1. Introduction and Preliminaries

It is well known that the Banach’s contraction principle for single-valued contractions in metric spaces was
extended in various ways. One of these extensions was given for the so called b−metric spaces by Czerwik
[15]. For more results on b-metric spaces and discussion on the topological structure introduced on it, we
refer to [3, 6, 7, 19].

We shall recall some well notions and definitions of the b−metric spaces.

Definition 1.1. [31] Let X be a set and s ≥ 1 be a given real number. A functional d : X × X→ R+ is said to
be a b−metric if the following axioms are satisfied, for all x, y, z ∈ X:

(1) d(x, y) = 0⇔ x = y,
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(2) d(x, y) = d(y, x),
(3) d(x, z) ≤ s

[
d(x, y) + d(y, z)

]
.

A pair (X, d) is called a b−metric space.

Lemma 1.2. [31] Let (X, d) be a b−metric space. Then the sequence {xn}n∈N ⊂ X is called:

(1) Convergent if and only if there exists x ∈ X such that d(xn, x) → 0 as n → ∞. In this case we write
limn→∞ xn = x.

(2) Cauchy if and only if d(xn, xm)→ 0 as n,m→∞.

Definition 1.3. Let X be a nonempty set. Then (X,�, d) is called an ordered b−metric space if and only if:

(1) (X, d) is a b−metric space,
(2) (X,�) is a partially ordered set.

Notice that we can endow the product space X × X with the partial order �P given by

(x, y) �p (u, v)⇔ x � u, y � v.

Definition 1.4. Let (X,�) be a partially ordered set. An elements x, y ∈ X are called comparable if x � y or
y � x.

Definition 1.5. Let (X,�) be a partially ordered set. A mapping f on X is said to be monotone non-decreasing
with respect to the order � if, for all x, y ∈ X, x � y implies f x � f y.

In [16], Dass and Gupta proved the following fixed point theorem for contractions of rational type.

Theorem 1.6. Let (X, d) be a complete metric space and T : X → X be a mapping such that there exist
α, β ≥ 0 with α + β < 1 satisfying

d(Tx,Ty) ≤ α
d(y,Ty)[1 + d(x,Tx)]

1 + d(x, y)
+ βd(x, y), for all x, y ∈ X.

Then T has a unique fixed point.

Then, Cabrera et al.[8] gave a version of Theorem 1.6 in the context of partially ordered metric spaces.
Recently, Oprea and Petruşel [31] obtained coupled fixed point theorems for monotone rational contractions
in ordered b−metric spaces, see also [9, 11].

The concept of coupled fixed point problem was considered, for the first time, by Opoitsev in [29, 30]
but a very fruitful approach in this field was proposed by Guo, Lakshmikantham [17] and Bhaskar, Lak-
shmikantham [5]. Then Lakshmikantham and Ćirić [24] extended these results by defining the mixed
g-monotone property and proved coupled coincidence and coupled common fixed point theorems for
nonlinear contractive mappings F : X × X→ X and 1 : X→ X in a partially ordered metric space.

Definition 1.7. [24] Let (X,�) be a partially ordered set, F : X × X → X and 1 : X → X. We say F has the
mixed g-monotone property if F(x, y) is monotone g-non-decreasing in its first argument and monotone
g-non-increasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, 1(x1) � 1(x2) implies F(x1, y) � F(x2, y)

and
y1, y2 ∈ X, 1(y1) � 1(y2) implies F(x, y1) � F(x, y2).

If g is the identity mapping, we obtain the Bhaskar and Lakshmikantham’s notion of a mixed monotone
property of the mapping F.
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Definition 1.8. [24]An element (x, y) ∈ X×X is called a coupled coincidence point of mappings F : X×X→ X
and 1 : X→ X if

F(x, y) = 1(x),F(y, x) = 1(y).

Also, if 1 is the identity mapping, then (x, y) is called a coupled fixed point of the mapping F.

Later on, many results related to this kind of problem appeared (see, for example [21, 26, 28, 35]).

The study of fixed points for multi-valued contraction mappings using the Hausdorff metric was initiated
by Nadler [34] and Markin [27]. Later many authors developed the existence of fixed points for various
multi-valued contractive mappings under different conditions. For details, we refer the reader to [1, 12, 13,
20, 22, 23, 25, 32, 33] and the references therein. The theory of multi-valued mappings has applications in
control theory, convex optimization, differential inclusion and economics.

Let (X, d) be a b−metric space. We denote by CB(X) the family of all nonempty closed and bounded subsets
of X. For A,B ∈ CB(X) and x ∈ X, we denote

D(x,A) = inf
a∈A

d(x, a).

Let H be the Hausdorff metric in CB(X) induced by the metric d on X, that is

H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(b,A)}.

It is clear that for any A,B ∈ CB(X) and a ∈ A, we have

D(a,B) ≤ H(A,B).

Definition 1.9. An element x ∈ X is said to be a fixed point of a set valued mapping T : X → CB(X) if and
only if x ∈ Tx.

In 1969, Nadler [34] extended the famous Banach contraction principle from single-valued to multi-valued
mapping and prove the following theorem.

Theorem 1.10. [34] Let (X, d) be a complete metric space and T be a mapping from X into CB(X). Assume
that there exists c ∈ [0, 1] such that

H
(
Tx,Ty

)
≤ cd(x, y),

for all x, y ∈ X. Then T has a fixed point.

The concept of coupled fixed point for multi-valued mapping F : X × X → CB(X) was introduced by Beg
and Butt [4] who followed the technique of Bhaskar and Lakshmikantham to define the mixed monotone
property for F and give sufficient conditions for the existence of its coupled fixed point (not necessarily
unique) in an ordered space (X,�, d).

Definition 1.11. [1] Let X be a nonempty set, F : X × X→ 2X (collection of all nonempty subsets of X) and
1 : X→ X. An element (x, y) ∈ X × X is called:

(1) coupled fixed point of F if x ∈ F(x, y) and y ∈ F(y, x),
(2) coupled coincidence point of a hybrid pair F, 1 if 1(x) ∈ F(x, y) and 1(y) ∈ F(y, x),
(3) coupled common fixed point of a hybrid pair F, 1 if x = 1(x) ∈ F(x, y) and y = 1(y) ∈ F(y, x).

We denote the set of coupled coincidence point of mappings F and 1 byg(F, 1). Note that if (x, y) ∈ g(F, 1),
then (y, x) is also in g(F, 1).

Definition 1.12. [1] Let F : X × X → 2X be a multi-valued mapping and 1 be a single-valued mapping on
X. The hybrid pair (F, 1) is called w−compatible if 1(F(x, y)) ⊆ F(1x, 1y) whenever (x, y) ∈ g(F, 1).



R. A. Rashwan and S. I. Moustafa, Journal of Advanced Studies in Topology 8:1 (2017), 31–58 43

It is well known that the fuzzy set concept plays an important role in many scientific and engineering
applications. The fuzziness appears when we need to perform calculations with imprecision variables. The
concept of fuzzy sets was introduced initially by Zadeh [36] in 1965. Then, Heilpern [18] introduced the
concept of fuzzy contraction mappings and developed Banach contraction principle for fuzzy mappings in
complete metric linear space. Subsequently several other authors have studied existence of fixed points of
fuzzy mappings satisfying some different contractive type conditions (see for example [2, 10, 14] and refer-
ences within). Very recently, Zhu et all. [37] introduced the concepts of coupled coincidence and coupled
common fixed points of single-valued and fuzzy mappings and established some coupled coincidence and
coupled common fixed point theorems for this hybrid pair.

Let (X, d) be a b−metric space with constant s ≥ 1 and I = [0, 1]. A fuzzy set in X is a function which
associates with each element in X a real number in the interval I. That is, A is a fuzzy set in X if for any
x ∈ X,

A :X→ I,
x 7→ Ax ∈ I,

the function value Ax, is called the grade of membership of x in A. For x ∈ X and r ∈ (0, 1], the fuzzy point
xr of X is the fuzzy set of X given by

xr(z) =

{
r, z = x,
0, z , x.

The r−level set of A, denoted by [A]r, is defined by

[A]r = {x : Ax ≥ r}, if r ∈ (0, 1],

[A]0 = {x : Ax > 0},

where B denotes the closure of the non-fuzzy set B.
A fuzzy set A is said to be an approximate quantity if and only if [A]r is a nonempty convex and compact
in X for each r ∈ I and supx∈X Ax = 1. We denote by W(X) the family of all approximate quantities in X.

Suppose that A,B ∈ W(X), then A is said to be more accurate than B, denoted by A ⊂ B, if and only if
Ax ≤ Bx for each x ∈ X.

Let IX be the collection of all fuzzy subsets in X and W(X) be a sub-collection of all approximate quantities.
For A,B ∈W(X), r ∈ I, define

pr(A,B) = inf
x∈[A]r,y∈[B]r

d(x, y),

Dr(A,B) = H([A]r, [B]r)
= max{ sup

x∈[A]r

pr(x,B), sup
y∈[B]r

pr(A, y)}.

Let X be an arbitrary set, Y be a metric linear space. A mapping T is called fuzzy mapping if T is a mapping
from X into IY, that is

T :X→ IY,

x 7→ Tx ∈ IY, (Tx is a fuzzy set on a metric linear space Y),
Tx : Y→ I,

y 7→ Tx(y) ∈ I, (Tx(y) is the grade of membership of y in Tx, for all y ∈ Y).

Therefore, a fuzzy mapping T is a fuzzy set on X × Y,

T :X→ IY,

(x, y) 7→ Tx(y) ∈ I.
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Lemma 1.13. Let (X, d) be a b−metric space with constant s ≥ 1, x, y ∈ X and A,B ∈W(X):

(1) If pr(x,A) = 0 then x ∈ [A]r and xr ⊂ A.
(2) If xr ⊂ A, then pr(x,B) ≤ Dr(A,B).
(3) pr(x,A) ≤ s

[
d(x, y) + pr(y,A)

]
.

Proof. For (1). Let pr(x,A) = infa∈[A]r d(x, a) = d(x, [A]r) = 0⇒ x ∈ [A]r. By the definition of the r−level set of
A and the fuzzy point xr we have xr(x) = r ≤ A(x) and xr(z) = 0 ≤ r ≤ A(x) for z , x. Then xr(u) ≤ A(u) for
all u ∈ X⇒ xr ⊂ A.
For (2). Let xr ⊂ A then A(x) ≥ xr(x) = r, i. e., x ∈ [A]r. Hence

pr(x,B) ≤ sup
x∈[A]r

pr(x,B)

≤ max{ sup
x∈[A]r

pr(x,B), sup
b∈[B]r

pr(A, b)} = Dr(A,B).

For (3).

pr(x,A) = inf
a∈[A]r

d(x, a)

≤ inf
a∈[A]r

[sd(x, y) + sd(y, a)]

≤ inf
a∈[A]r

sd(x, y) + inf
a∈[A]r

sd(y, a)

≤ sd(x, y) + spr(y,A).

�

Definition 1.14. [37] Let F : X × X → IX be a fuzzy mapping and 1 : X → X a single-valued mapping. An
element (x, y) ∈ X × X is said to be

(1) fuzzy coupled fixed point of F if there exists r ∈ (0, 1] such that x ∈ [F(x, y)]r and y ∈ [F(y, x)]r,
(2) fuzzy coupled coincidence point of F and 1 if there exists r ∈ (0, 1] such that 1x ∈ [F(x, y)]r and
1y ∈ [F(y, x)]r,

(3) fuzzy coupled common fixed point of F and 1 if there exists r ∈ (0, 1] such that x = 1x ∈ [F(x, y)]r and
y = 1y ∈ [F(y, x)]r.

We denote bygr(F, 1) = {(x, y) ∈ X×X | 1x ∈ [F(x, y)]r and 1y ∈ [F(y, x)]r} the set of fuzzy coupled coincidence
points of F and 1. Note that if (x, y) ∈ gr(F, 1), then (y, x) is also in gr(F, 1).

Definition 1.15. [37] Let F : X × X → IX be a fuzzy mapping and 1 : X → X be a single-valued mapping.
The hybrid pair {F, 1} is said to be r−w−compatible if there exists r ∈ (0, 1] such that 1[F(x, y)]r ⊆ [F(1x, 1y)]r,
whenever (x, y) ∈ gr(F, 1).

The following lemma is important in proving our main results

Lemma 1.16. [34] Let A,B ∈ CB(X) and η > 0 then for each a ∈ A there exists b ∈ B such that

d(A,B) ≤ H(A,B) + η.

Since every compact subset of a b−metric space is bounded and closed, then we can apply Lemma 1.16 for
A,B ∈W(X).

Starting with the papers of Zhu et all [37] and Orea and Petruşel [31], in the frame work of complete b−metric
spaces, in section two we present some existence and uniqueness theorems for coupled coincidence and
coupled common fixed point for hybrid pair of single-valued and fuzzy mappings under some rational
type contractions. As a consequence of section two we obtain the corresponding results for hybrid pair of
single-valued and multi-valued mappings. Section three is devoted to establish some coupled coincidence
and common fixed point results in partially ordered b−metric spaces for mappings having mixed monotone
property and satisfying certain rational contractive condition.
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2. Coupled coincidence and common fixed point theorems for single-valued and fuzzy mappings

Theorem 2.1. Let (X, d) be a b−metric space with constant s ≥ 1, F : X × X → W(X) be a fuzzy mapping
and 1 : X → X be a single-valued mapping on X. Suppose that there exist non-negative real numbers
α, β, γ, δ ∈ [0, 1) and r ∈ (0, 1] with (α + γ + δs) + (β + γ + δs)s < 1 such that for all x, y,u, v ∈ X

H
(
[F(x, y)]r, [F(u, v)]r

)
≤

αd(1u, [F(u, v)]r)
[
1 + d(1x, [F(x, y)]r)

]
1 + d(1x, 1u)

+ βd(1x, 1u) + γ
[
d(1x, [F(x, y)]r) + d(1u, [F(u, v)]r)

]
+ δ

[
d(1x, [F(u, v)]r) + d(1u, [F(x, y)]r)

]
.

(2.1)

Suppose also that [F(x, y)]r ⊆ 1(X) for all x, y ∈ X and 1(X) is complete subspace of X.
Then F and 1 have at least one fuzzy coupled coincidence point in X.

Proof. Let x0, y0 ∈ X be arbitrary. Then [F(x0, y0)]r and [F(y0, x0)]r are nonempty and well defined. Since
[F(x, y)]r ⊆ 1(X), there exist x1, y1 ∈ X such that 1x1 ∈ [F(x0, y0)]r and 1y1 ∈ [F(y0, x0)]r. By Lemma 1.16, we
obtain that for this point 1x1 ∈ [F(x0, y0)]r and β + γ + δs > 0 there exists 1x2 ∈ [F(x1, y1)]r such that

d(1x1, 1x2) ≤ H
(
[F(x0, y0)]r, [F(x1, y1)]r

)
+ (β + γ + δs).

Therefore, by Eq. ( 2.1), we have

d(1x1, 1x2) ≤ H
(
[F(x0, y0)]r, [F(x1, y1)]r

)
+ (β + γ + δs)

≤

αd(1x1, [F(x1, y1)]r)
[
1 + d(1x0, [F(x0, y0)]r)

]
1 + d(1x0, 1x1)

+ βd(1x0, 1x1) + γ
[
d(1x0, [F(x0, y0)]r) + d(1x1, [F(x1, y1)]r)

]
+ δ

[
d(1x0, [F(x1, y1)]r) + d(1x1, [F(x0, y0)]r)

]
+ (β + γ + δs)

≤

αd(1x1, 1x2)
[
1 + d(1x0, 1x1)

]
1 + d(1x0, 1x1)

+ βd(1x0, 1x1) + γ
[
d(1x0, 1x1) + d(1x1, 1x2)

]
+ δ

[
d(1x0, 1x2) + d(1x1, 1x1)

]
+ (β + γ + δs)

≤ αd(1x1, 1x2) + βd(1x0, 1x1) + γ
[
d(1x0, 1x1) + d(1x1, 1x2]r)

]
+ δ

[
sd(1x0, 1x1) + sd(1x1, 1x2)

]
+ (β + γ + δs)

≤ (α + γ + δs)d(1x1, 1x2) + (β + γ + δs)d(1x0, 1x1) + (β + γ + δs),

which implies that

d(1x1, 1x2) ≤
β + γ + δs

1 − (α + γ + δs)
d(1x0, 1x1) +

β + γ + δs
1 − (α + γ + δs)

.

Let k =
β+γ+δs

1−(α+γ+δs) . Since (α + γ + δs) + (β + γ + δs)s < 1, then we obtain that k < 1
s . Thus,

d(1x1, 1x2) ≤ kd(1x0, 1x1) + k. (2.2)
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Similarly, we can find 1y2 ∈ [F(y1, x1)]r such that

d(1y1, 1y2) ≤ H
(
[F(y0, x0)]r, [F(y1, x1)]r

)
+ (β + γ + δs)

≤

αd(1y1, [F(y1, x1)]r)
[
1 + d(1y0, [F(y0, x0)]r)

]
1 + d(1y0, 1y1)

+ βd(1y0, 1y1) + γ
[
d(1y0, [F(y0, x0)]r) + d(1y1, [F(y1, x1)]r)

]
+ δ

[
d(1y0, [F(y1, x1)]r) + d(1y1, [F(y0, x0)]r)

]
+ (β + γ + δs)

≤ αd(1y1, 1y2) + βd(1y0, 1y1) + γ
[
d(1y0, 1y1) + d(1y1, 1y2]r)

]
+ δ

[
sd(1y0, 1y1) + sd(1y1, 1y2)

]
+ (β + γ + δs)

≤ (α + γ + δs)d(1y1, 1y2) + (β + γ + δs)d(1y0, 1y1) + (β + γ + δs),

which gives

d(1y1, 1y2) ≤
β + γ + δs

1 − (α + γ + δs)
d(1y0, 1y1) +

β + γ + δs
1 − (α + γ + δs)

,

or
d(1y1, 1y2) ≤ kd(1y0, 1y1) + k. (2.3)

Again for the point 1x2 ∈ [F(x1, y1)]r and (β+γ+δs)2

1−(α+γ+δs) > 0, we can find 1x3 ∈ [F(x2, y2)]r such that

d(1x2, 1x3) ≤ H
(
[F(x1, y1)]r, [F(x2, y2)]r

)
+

(β + γ + δs)2

1 − (α + γ + δs)

≤

αd(1x2, [F(x2, y2)]r)
[
1 + d(1x1, [F(x1, y1)]r)

]
1 + d(1x1, 1x2)

+ βd(1x1, 1x2) + γ
[
d(1x1, [F(x1, y1)]r) + d(1x2, [F(x2, y2)]r)

]
+ δ

[
d(1x1, [F(x2, y2)]r) + d(1x2, [F(x1, y1)]r)

]
+

(β + γ + δs)2

1 − (α + γ + δs)

≤ αd(1x2, 1x3) + βd(1x1, 1x2) + γ
[
d(1x1, 1x2) + d(1x2, 1x3)

]
+ δd(1x1, 1x3) +

(β + γ + δs)2

1 − (α + γ + δs)

≤ (α + γ + δs)d(1x2, 1x3) + (β + γ + δs)d(1x1, 1x2) +
(β + γ + δs)2

1 − (α + γ + δs)
.

This implies that

d(1x2, 1x3) ≤
β + γ + δs

1 − (α + γ + δs)
d(1x1, 1x2) +

( β + γ + δs
1 − (α + γ + δs)

)2
.

So
d(1x2, 1x3) ≤ kd(1x1, 1x2) + k2. (2.4)

Also for the point 1y2 ∈ [F(y1, 1x1)]r, there is another point 1y3 ∈ [F(y2, 1x2)]r with

d(1y2, 1y3) ≤ kd(1y1, 1y2) + k2. (2.5)

Continuing this process, one obtains two sequences {1xn} and {1yn} in X such that

1xn+1 ∈ [F(xn, yn)]r , 1yn+1 ∈ [F(yn, 1xn)]r (2.6)
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and

d(1xn, 1xn+1) ≤ kd(1xn−1, 1xn) + kn,

d(1yn, 1yn+1) ≤ kd(1yn−1, 1yn) + kn.
(2.7)

Next, we will show that {1xn} and {1yn} are Cauchy sequences. By using Eq. ( 2.7) we have

d(1xn, 1xn+1) ≤ kd(1xn−1, 1xn) + kn

≤ k
(
kd(1xn−2, 1xn−1) + kn−1

)
+ kn

≤ k2d(1xn−2, 1xn−1) + 2kn

...

≤ knd(1x0, 1x1) + nkn, k < 1.

(2.8)

Then, for each p ∈ N, we obtain by repeated application of triangle inequality that

d(1xn, 1xn+p) ≤ sd(1xn, 1xn+1) + s2d(1xn+1, 1xn+2) + · · · + spd(1xn+p−1, 1xn+p)

≤ [skn + s2kn+1 + · · · + spkn+p−1]d(1x0, 1x1)+

[nskn + (n + 1)s2kn+1 + · · · + (n + p − 1)spkn+p−1]

≤ skn 1 − (sk)p

1 − sk
d(1x0, 1x1) + [nkn−1 + (n + 1)kn−1 + · · · + (n + p − 1)kn−1]

→ 0 as n→∞.

It follows that {1xn} is Cauchy sequence. Similarly, we can show that {1yn} is also Cauchy sequence. Since
1(X) is complete, there exist x, y ∈ X such that

1xn → 1x and 1yn → 1y. (2.9)

By Lemma 1.13

d(1x, [F(x, y)]r) ≤ sd(1x, 1xn+1) + sd
(
1xn+1, [F(x, y)]r

)
d(1x, [F(x, y)]r) − sd(1x, 1xn+1) ≤ sd

(
1xn+1, [F(x, y)]r

)
≤ sH

(
[F(x, y)]r, [F(xn, yn)]r

)
≤ s

(αd(1xn, [F(xn, yn)]r)
[
1 + d(1x, [F(x, y)]r)

]
1 + d(1x, 1xn)

+ βd(1x, 1xn) + γ
[
d(1x, [F(x, y)]r) + d(1xn, [F(xn, yn)]r)

]
+ δ

[
d(1x, [F(xn, yn)]r) + d(1xn, [F(x, y)]r)

])
≤ s

(αd(1xn, 1xn+1)
[
1 + d(1x, [F(x, y)]r)

]
1 + d(1x, 1xn)

+ βd(1x, 1xn)

+ γ
[
d(1x, [F(x, y)]r) + d(1xn, 1xn+1)

]
+ δ

[
d(1x, 1xn+1) + d(1xn, [F(x, y)]r)

])
.

Since, from Eq. ( 2.8), d(1xn, [F(xn, yn)]r) ≤ d(1xn, 1xn+1)→ 0 as n→ ∞ and from Eq. ( 2.9) and Lemma 1.2,
d(1x, 1xn) → 0 as n tends to infinity. Also, we have, d(1xn, [F(x, y)]r) ≤ sd(1xn, 1x) + sd(1x, [F(x, y)]r). Then
we can take limit as n→∞ to get

d(1x, [F(x, y)]r) ≤ s
(
γd(1x, [F(x, y)]r) + sδd(1x, [F(x, y)]r)

)
.
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That is [
1 − s(γ + sδ)

]
d(1x, [F(x, y)]r) ≤ 0.

This implies that d(1x, [F(x, y)]r) = 0. That is pr(1x,F(x, y)) = 0, then by Lemma 1.13 we get 1x ∈ [F(x, y)]r. A
similar argument can be derived to show that 1y ∈ [F(y, x)]r. This completes the proof and (x, y) is a fuzzy
coupled coincidence point of the mappings F and 1.

The existence and uniqueness of fuzzy coupled common fixed point for F and 1 is discussed in the following
theorem.

Theorem 2.2. In addition to hypotheses of Theorem 2.1, F and 1 have fuzzy coupled common fixed point
if one of the following conditions holds:

(a) F and 1 are r − w−compatible, limn→∞ 1
nx = u, limn→∞ 1

ny = v for some (x, y) ∈ gr(F, 1), u, v ∈ X and
1 is continuous at u and v.

(b) 1 is continuous at x, y for some (x, y) ∈ gr(F, 1) and there exist u, v ∈ X with limn→∞ 1
nu = x,

limn→∞ 1
nv = y.

(c) There exists (x, y) ∈ X × X such that 1x = 12x, 1y = 12y and (1x, 1y) ∈ gr(F, 1).
(d) For any two fuzzy coupled coincidence points for F and 1 (say, (x, y) and (u, v)) the set 1

(
gr (F, 1)

)
is

singleton under the following condition

d(1x, 1u) ≤ H([F(x, y)]r, [F(u, v)]r)

and
d(1y, 1v) ≤ H([F(y, x)]r, [F(v,u)]r).

Furthermore, in addition to what mentioned in (d) assume one of the following holds

(i) 1
(
gr (F, 1)

)
⊆ gr(F, 1),

(ii) F and 1 are r − w−compatible.

Proof. Theorem 2.1 ensure the existence of at least one fuzzy coupled coincidence point for F and 1, i.e.,
gr(F, 1) , ∅.

Suppose that (a) holds. Then for some (x, y) ∈ gr(F, 1), there exist u, v ∈ X with limn→∞ 1
nx = u, limn→∞ 1

ny =
v and 1 is continuous at u and v. Hence

u = lim
n→∞
1n+1x = lim

1nx→u
1(1nx) = 1u (2.10)

and
v = lim

n→∞
1n+1y = lim

1n y→v
1(1ny) = 1v. (2.11)

As F and 1 are r − w−compatible, we have

1[F(x, y)]r ⊆ [F(1x, 1y)]r (2.12)

and
1[F(y, x)]r ⊆ [F(1y, 1x)]r. (2.13)

Note that if (x, y) ∈ gr(F, 1), then (y, x) is also in gr(F, 1). From ( 2.12), ( 2.13), 1x ∈ [F(x, y)]r and 1y ∈ [F(y, x)]r,
we can get that

1(1x) ∈ [F(1x, 1y)]r (2.14)
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and
1(1y) ∈ [F(1y, 1x)]r. (2.15)

Thus,
(1x, 1y) ∈ gr(F, 1).

Again by the r − w−compatibility of F and 1, we obtain that

1[F(1x, 1y)]r ⊆ [F(1(1x), 1(1y))]r (2.16)

and
1[F(1y, 1x)]r ⊆ [F(1(1y), 1(1x))]r (2.17)

Eqs. ( 2.14) and ( 2.16) imply to
1(12x) ∈ [F(12x, 12y)]r.

Also, ( 2.15) and ( 2.17) yield to
1(12y) ∈ [F(12y, 12x)]r.

So,
(12x, 12y) ∈ gr(F, 1).

Continuing this process, we can get that

1nx ∈ [F(1n−1x, 1n−1y)]r, 1
ny ∈ [F(1n−1y, 1n−1x)]r (2.18)

and
(1nx, 1ny) ∈ gr(F, 1) for all n ≥ 1. (2.19)

Then by ( 2.1), ( 2.18) and Lemma 1.13

d(1u,[F(u, v)]r) − sd(1u, 1nx) ≤ sd
(
1nx, [F(u, v)]r

)
≤ sH

(
[F(u, v)]r, [F(1n−1x, 1n−1y)]r

)
≤ s

(αd(1nx, [F(1n−1x, 1n−1y)]r)
[
1 + d(1u, [F(u, v)]r)

]
1 + d(1u, 1nx)

+ βd(1u, 1nx) + γ
[
d(1u, [F(u, v)]r) + d(1nx, [F(1n−1x, 1n−1y)]r)

]
+ δ

[
d(1u, [F(1n−1x, 1n−1y)]r) + d(1nx, [F(u, v)]r)

])
≤ s

(αd(1nx, 1nx)
[
1 + d(1u, [F(u, v)]r)

]
1 + d(1u, 1nx)

+ βd(1u, 1nx)

+ γ
[
d(1u, [F(u, v)]r) + d(1nx, 1nx)

]
+ δd(1u, 1nx) + δs

[
d(1nx, 1u) + d(1u, [F(u, v)]r)

])
≤ s(β + δ + δs)d(1u, 1nx) + (γ + δs)d(1u, [F(u, v)]r).

Letting n→∞ above to get
[1 − (γ + δs)]d(1u, [F(u, v)]r) ≤ 0.

Therefore, u = 1u ∈ [F(u, v)]r. Similarly, v = 1v ∈ [F(u, v)]r. Hence (u, v) is a fuzzy coupled common fixed
point of F and 1.

Suppose that (b) holds. Then 1 is continuous at (x, y), limn→∞ 1
nu = x and limn→∞ 1

nv = y for some
(x, y) ∈ gr(F, 1) and u, v ∈ X. It follows from the continuity of 1 at x, y that

x = lim
n→∞
1n+1u = lim

1nu→x
1(1nu) = 1x ∈ [F(x, y)]r
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and
y = lim

n→∞
1n+1v = lim

1nv→y
1(1nv) = 1y ∈ [F(y, x)]r.

Hence (x, y) is a fuzzy coupled common fixed point of F and 1.

Suppose that (c) holds. Then there exists (x, y) ∈ X × X such that 1x = 12x, 1y = 12y and (1x, 1y) ∈ gr(F, 1).
Then we have

1x = 1(1x) ∈ [F(1x, 1y)]r

and
1y = 1(1y) ∈ [F(1y, 1x)]r.

Hence (1x, 1y) is a fuzzy coupled common fixed point of F and 1.

Finally, suppose that (d) holds. That is, if we have two fuzzy coupled coincidence points for F and 1 (say,
(x, y) and (u, v)) then

d(1x, 1u) ≤ H([F(x, y)]r, [F(u, v)]r) (2.20)

and
d(1y, 1v) ≤ H([F(y, x)]r, [F(v,u)]r).

Now we aim to proof that the set 1
(
gr (F, 1)

)
is singleton, i.e., if we have (x, y), (u, v), . . . ∈ gr(F, 1) then

1x = 1u = . . . and 1y = 1v = . . .. By ( 2.1), ( 2.20) and Lemma 1.13

d(1x, 1u) ≤ H
(
[F(x, y)]r, [F(u, v)]r

)
≤

αd(1u, [F(u, v)]r)
[
1 + d(1x, [F(x, y)]r)

]
1 + d(1x, 1u)

+ βd(1x, 1u)

+ γ
[
d(1x, [F(x, y)]r) + d(1u, [F(u, v)]r)

]
+ δ

[
d(1x, [F(u, v)]r) + d(1u, [F(x, y)]r)

]
≤ (β + 2δ)d(1x, 1u)

[1 − (β + 2δ)]d(1x, 1u) ≤ 0.

Thus, 1x = 1u. By a similar way we can conclude that 1y = 1v. Therefore, 1
(
gr (F, 1)

)
= {(1x, 1y)}. We have

to discuss two cases

• Case 1. Firstly, if 1
(
gr (F, 1)

)
⊆ gr(F, 1) then x = 1x =∈ [F(x, y)]r and y = 1y =∈ [F(y, x)]r.

• Case 2. Secondly, if F and 1 are r − w−compatible. Therefore, from ( 2.12), ( 2.13) we get

1(1x) ∈ [F(1x, 1y)]r

and
1(1y) ∈ [F(1y, 1x)]r.

Thus,
(1x, 1y) ∈ gr(F, 1).

Hence, we have (x, y) and (1x, 1y) are in gr(F, 1). From above we conclude that

1x = 1(1x) ∈ [F(1x, 1y)]r

and
1y = 1(1y) ∈ [F(1y, 1x)]r.
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Hence (1x, 1y) is a fuzzy coupled common fixed point of F and 1.

At the end of the proof we shall claim that the existed fuzzy coupled common fixed point for hybrid pair F
and 1 is unique under the conditions mentioned in (d). Let (x, y) and (x́, ý) are two fuzzy coupled common
fixed point for F and 1, then we have x = 1x ∈ F(x, y), y = 1y ∈ F(y, x), x́ = 1x́ ∈ F(x́, ý) and ý = 1ý ∈ F(ý, x́).
Therefore, by (2.1) we obtain

d(x, x́) = d(1x, 1x́) ≤ H
(
[F(x, y)]r, [F(x́, ý)]r

)
≤ α

(d(1x́, [F(x́, ý)]r)
[
1 + d(1x, [F(x, y)]r)

]
1 + d(1x, 1x́)

)
+ βd(1x, 1x́)

+ γ
[
d(1x, [F(x, y)]r) + d(1x́, [F(x́, ý)]r)

]
+ δ

[
d(1x, [F(x́, ý)]r) + d(1x́, [F(x, y)]r)

]
≤ α

(d(1x́, 1x́)
[
1 + d(1x, 1x)

]
1 + d(1x, 1x́)

)
+ βd(1x, 1x́) + γ

[
d(1x, 1x) + d(1x́, 1x́)

]
+ δ

[
d(1x, 1x́) + d(1x́, 1x)

]
≤ βd(1x, 1x́) + 2δd(1x, 1x́)
≤ (β + 2δ)d(1x, 1x́),

which implies that
[1 − (β + 2δ)]d(x, x́) ≤ 0.

Thus, x = x́, by a similar way we can prove that y = ý. That is, F and 1 have a unique fuzzy common fixed
point.

3. Coupled coincidence and common fixed point theorems for single-valued and multi-valued mappings

Under special choice for the mapping F(x, y), for any x, y ∈ X, we obtain the corresponding multi-valued
and single-valued results as follows:
We know that

F :X × X→W(X),
(x, y) 7→ F(x, y)

and

F(x, y) :X→ I = [0, 1],
u 7→ r ∈ I.

Now we consider that F(x, y), for all (x, y) ∈ X × X is the constant mapping defined by

F(x, y)(u) =

{
1, u ∈ T(x, y),
0, otherwise, (3.1)

where T : X × X→ CB(X) is multi-valued mapping from X × X into CB(X).
Then for r ∈ (0, 1], we have

[F(x, y)]r = {u ∈ X : F(x, y)(u) ≥ r}
= {u ∈ X : F(x, y)(u) = 1 ≥ r}
= {u ∈ X : u ∈ T(x, y) ≥ r}
= T(x, y).
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Therefore, we can get the specific form of inequality (2.1) as

H
(
[F(x, y)]r, [F(u, v)]r

)
≤ α

(d(1u, [F(u, v)]r)
[
1 + d(1x, [F(x, y)]r)

]
1 + d(1x, 1u)

)
+ βd(1x, 1u) + γ

[
d(1x, [F(x, y)]r) + d(1u, [F(u, v)]r)

]
+ δ

[
d(1x, [F(u, v)]r) + d(1u, [F(x, y)]r)

]
H
(
T(x, y),T(u, v)

)
≤ α

(d(1u,T(u, v))
[
1 + d(1x,T(x, y))

]
1 + d(1x, 1u)

)
+ βd(1x, 1u) + γ

[
d(1x,T(x, y)) + d(1u,T(u, v))

]
+ δ

[
d(1x,T(u, v)) + d(1u,T(x, y))

]
.

Consider F(x, y) as in (3.1) we obtain the following corollary.

Corollary 3.1. Let (X, d) be a b−metric space with constant s ≥ 1, T : X × X → CB(X) be a multi-valued
mapping and 1 : X → X be a single-valued mapping on X. Suppose that there exist non-negative real
numbers α, β, γ, δ ∈ [0, 1) with (α + γ + δs) + (β + γ + δs)s < 1 and for all x, y,u, v ∈ X we have

H
(
T(x, y),T(u, v)

)
≤ α

(d(1u,T(u, v))
[
1 + d(1x,T(x, y))

]
1 + d(1x, 1u)

)
+ βd(1x, 1u)

+ γ
[
d(1x,T(x, y)) + d(1u,T(u, v))

]
+ δ

[
d(1x,T(u, v)) + d(1u,T(x, y))

]
.

(3.2)

Suppose also that T(x, y) ⊆ 1(X) for all x, y ∈ X and 1(X) is complete subspace of X.
Then T and 1 have at least one coupled coincidence point in X. Moreover, if T and 1 are w−compatible and

d(1x, 1u) ≤ H(T(x, y),T(u, v)) and d(1y, 1v) ≤ H(T(y, x),T(v,u)),

for any two coupled coincidence points (x, y) and (u, v) for F and 1. Then F and 1 have unique coupled
common fixed point.

4. Coupled coincidence and common fixed point theorems for single-valued mappings defined on a
space with partial order

Theorem 4.1. Let (X,�) be a partially ordered set and d : X × X → R+ be a b−metric with constant s ≥ 1.
Suppose that F : X × X → X and 1 : X → X be two single-valued mappings on X, F has the 1−mixed
monotone property, F(x, y) ⊆ 1(X) for all x, y ∈ X and 1(X) is complete subspace of X. Suppose that there
exist non-negative real numbers α, β, γ, δ ∈ [0, 1) with (α + γ + δs) + (β + γ + δs)s < 1 such that

d
(
F(x, y),F(u, v)

)
≤
αd(1x,F(x, y))d(1u,F(u, v))

1 + d(1x, 1u)
+ βd(1x, 1u)

+ γ
[
d(1x,F(x, y)) + d(1u,F(u, v))

]
+ δ

[
d(1x,F(u, v)) + d(1u,F(x, y))

]
,

(4.1)

for all x, y,u, v ∈ X with 1x � 1u and 1y � 1v.
Also suppose that X has the following properties:

(i) if a sequence {xn} ⊂ X is a non-decreasing sequence with xn → x ∈ X, then x = sup
∀n{xn},

(ii) if a sequence {yn} ⊂ X is a non-increasing sequence with yn → y ∈ X, then y = inf∀n{yn}.
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Furthermore, if there exists two elements x0, y0 ∈ X with 1x0 � F(x0, y0) and 1y0 � F(y0, x0), then there
exists x, y ∈ X such that 1x = F(x, y) and 1y = F(y, x), that is, F and 1 have a coupled coincidence point
(x, y) ∈ X × X.

Proof. Using F(X × X) ⊆ 1(X) and beginning with these points x0, y0 ∈ X, we can find x1, y1 ∈ X such that
1x1 = F(x0, y0) and 1y1 = F(y0, x0). Also for x1, y1 ∈ X there exist x2, y2 ∈ X such that 1x2 = F(x1, y1) and
1y2 = F(y1, x1). By the 1−mixed monotone property of F, 1x0 � F(x0, y0) and 1y0 � F(y0, x0), we have

1x0 � 1x1 and 1y0 � 1y1 ⇒

1x1 = F(x0, y0) � F(x1, y1) = 1x2 and 1y1 = F(y0, x0) � F(y1, x1) = 1y2.

Continuing in this way, we construct two sequences {1xn}n≥0 and {1yn}n≥0 in X such that{
1xn+1 = F(xn, yn),
1yn+1 = F(yn, xn).

By mathematical induction we obtain

1xn � 1xn+1 and 1yn � 1yn+1 ∀n ≥ 0.

If 1xn = 1xn+1 and 1yn = 1yn+1 for some n ≥ 1 then 1xn = F(xn, yn) and 1yn = F(1yn, 1xn), i.e., (xn, yn) is a
coupled coincidence point of F and 1 and this completes the proof. So from now on, we assume that either
1xn , 1xn+1 or 1yn , 1yn+1 for all n. Since 1xn−1 � 1xn and 1yn−1 � 1yn, then from (4.1), we have

d(1xn, 1xn+1) = d
(
F(xn−1, yn−1),F(xn, yn)

)
≤
αd(1xn−1,F(xn−1, yn−1))d(1xn,F(xn, yn))

1 + d(1xn−1, 1xn)

)
+ βd(1xn−1, 1xn) + γ

[
d(1xn−1,F(xn−1, yn−1)) + d(1xn,F(xn, yn))

]
+ δ

[
d(1xn−1,F(xn, yn)) + d(1xn,F(xn−1, yn−1))

]
≤
αd(1xn−1, 1xn)d(1xn, 1xn+1)

1 + d(1xn−1, 1xn)

)
+ βd(1xn−1, 1xn) + γ

[
d(1xn−1, 1xn) + d(1xn, 1xn+1)

]
+ δ

[
d(1xn−1, 1xn+1) + d(1xn, 1xn)

]
≤ αd(1xn, 1xn+1) + βd(1xn−1, 1xn) + γ

[
d(1xn−1, 1xn) + d(1xn, 1xn+1)

]
+ δ

[
sd(1xn−1, 1xn) + sd(1xn, 1xn+1)

]
≤ (α + γ + δs)d(1xn, 1xn+1) + (β + γ + δs)d(1xn−1, 1xn).

So we have

d(1xn, 1xn+1) ≤
β + γ + δs

1 − (α + γ + δs)
d(1xn−1, 1xn)

...

≤ knd(1x0, 1x1).

(4.2)
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Similarly,

d(1yn+1, 1yn) = d
(
F(yn, xn),F(yn−1, xn−1)

)
≤
αd(1yn,F(yn, xn))d(1yn−1,F(yn−1, xn−1))

1 + d(1yn, 1yn−1)

)
+ βd(1yn−1, 1yn) + γ

[
d(1yn,F(yn, xn)) + d(1yn−1,F(yn−1, xn−1))

]
+ δ

[
d(1yn,F(yn−1, xn−1)) + d(1yn−1,F(yn, xn))

]
≤ (α + γ + δs)d(1yn, 1yn+1) + (β + γ + δs)d(1yn−1, 1yn)

≤
β + γ + δs

1 − (α + γ + δs)
d(1yn−1, 1yn)

...

≤ knd(1y0, 1y1).

Let n ∈ N and p ≥ 1. Now we will prove that {1xn} and {1yn} are Cauchy sequences in X.

d(1xn, 1xn+p) ≤ sd(1xn, 1xn+1) + s2d(1xn+1, 1xn+2) + · · · + spd(1xn+p−1, 1xn+p)

≤ [skn + s2kn+1 + · · · + spkn+p−1]d(1x0, 1x1)

≤ skn[1 + sk + · · · + (sk)p−1]d(1x0, 1x1)

≤ skn 1 − (sk)p

1 − sk
d(1x0, 1x1)→ 0 as n→∞.

It follows that {1xn} is Cauchy sequence. Similarly, we can show that {1yn} is also Cauchy sequence. Since
1(X) is complete, there exist x, y ∈ X such that

1xn → 1x and 1yn → 1y. (4.3)

Now we show that (x, y) is a coupled coincidence point for F and 1. For this purpose we shall use (4.1)
with x = xn, y = yn, u = x and v = y, then take limit on both sides as n tends to infinity and use Eq. (4.3),
Lemma 1.2 and properties on X.

d(1x,F(x, y)) ≤ sd(1x, 1xn+1) + sd
(
1xn+1,F(x, y)

)
d(1x,F(x, y)) − sd(1x, 1xn+1) ≤ sd

(
F(xn, yn),F(x, y)

)
≤ s

(αd(1xn,F(xn, yn))d(1x,F(x, y))
1 + d(1xn, 1x)

+ βd(1x, 1xn)

+ γ
[
d(1xn,F(xn, yn)) + d(1x,F(x, y))

]
+ δ

[
d(1xn,F(x, y)) + d(1x,F(xn, yn))

])
≤ s

(αd(1xn, 1xn+1)d(1x,F(x, y))
1 + d(1xn, 1x)

)
+ βd(1x, 1xn)

+ γ
[
d(1xn, 1xn+1) + d(1x,F(x, y))

]
+ δ

[
d(1xn,F(x, y)) + d(1x, 1xn+1)

])
[
1 − s(γ + sδ)

]
d(1x,F(x, y)) ≤ 0.

This implies that 1x = F(x, y). A similar argument can be derived to show that F(y, x) = 1y. This completes
the proof and (x, y) is a coupled coincidence point of the mappings F and 1.

Remark 4.2. If F is continuous and commutes with 1, we can get the same result without using proper-
ties (i) and (ii) on X. F(1x, 1y) = F(limn→∞ 1xn, limn→∞ 1yn) = limn→∞ F(1xn, 1yn) = limn→∞ 1F(xn, yn) =
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limn→∞ 1(1xn+1) = 1x and
F(1y, 1x) = F(limn→∞ 1yn, limn→∞ 1xn) = limn→∞ F(1yn, 1xn) = limn→∞ 1F(yn, xn)
= limn→∞ 1(1yn+1) = 1y.

Now we proof the uniqueness of the coupled point of coincidence under additional condition and the
existence of the coupled common fixed point by using the notion of weak compatibility.

Theorem 4.3. By adding to the hypotheses of Theorem 4.1 the condition: for every two coupled coincidence
points of F and 1, (x, y) and (x∗, y∗), there exists (u, v) ∈ X2 such that (1u, 1v) is comparable, at the same time,
to (1x, 1y) and (1x∗, 1y∗). Then F and 1 have a unique point of coincidence. Furthermore, if F and 1 are
w−compatible then they have a unique coupled common fixed point.

Proof. Suppose that (x, y) and (x∗, y∗) are two coupled coincidence points of F and 1, that is, 1x = F(x, y),
1y = F(y, x), 1x∗ = F(x∗, y∗) and 1y∗ = F(y∗, x∗). We shall prove that 1x = 1x∗ and 1y = 1y∗. Consider the
following two cases:

(Case 1) If (1x, 1y) and (1x∗, 1y∗) are comparable, say (1x, 1y) �p (1x∗, 1y∗), then we have

d(1x, 1x∗) = d
(
F(x, y),F(x∗, y∗)

)
≤
αd(1x,F(x, y))d(1x∗,F(x∗, y∗))

1 + d(1x, 1x∗)
+ βd(1x, 1x∗)

+ γ
[
d(1x,F(x, y)) + d(1x∗,F(x∗, y∗))

]
+ δ

[
d(1x,F(x∗, y∗)) + d(1x∗,F(x, y))

]
≤

(
β + 2δ

)
d(1x, 1x∗),

which gives d(1x, 1x∗) = 0. Thus, 1x = 1x∗. Also, we have

d(1y, 1y∗) = d
(
F(y, x),F(y∗, x∗)

)
= 0.

Hence, 1y = 1y∗.
(Case 2) If (1x, 1y) and (1x∗, 1y∗) are not comparable. By assumption there exists (u, v) ∈ X×X such that (1u, 1v)

is comparable to (1x, 1y) and to (1x∗, 1y∗).
Put u0 = u, v0 = v, x0 = x, y0 = y, x∗0 = x∗ and y∗0 = x∗. Using that F(X × X) ⊆ 1(X), for u0, v0 ∈ X,
there exist u1, v1 ∈ X with 1u1 = F(u0, v0) and 1v1 = F(v0,u0). For n ≥ 1, continuing this process we
can construct the sequences {1un} and {1vn} such that

1un+1 = F(1un, 1vn) and 1vn+1 = F(1vn, 1un).

On the same way, for (x, y) and (x∗, y∗) ∈ X × X, define the sequences {1xn}, {1yn}, {1x∗n} and {1y∗n} as

1xn+1 = F(1xn, 1yn), 1yn+1 = F(1yn, 1xn)

and
1x∗n+1 = F(1x∗n, 1y

∗

n), 1y∗n+1 = F(1y∗n, 1x
∗

n).

Since F has 1−mixed monotone property and 1x1 = F(x0, y0) = 1x0 (that is, 1x1 � 1x0 and 1x1 � 1x0),
then we have

1xn+1 � 1xn and 1xn � 1xn+1 ∀n ≥ 0.

Hence
1xn+1 = 1xn or 1xn = 1x = F(x, y).

By a similar way, we get

1yn = F(y, x), 1x∗n = F(x∗, y∗) and 1y∗n = F(y∗, x∗).
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Since (1u0, 1v0) is comparable with (1x, 1y), say 1u0 � 1x0 and 1v0 � 1y0, then we have

1un � 1xn = 1x and 1vn � 1yn = 1y ∀n ≥ 0. (4.4)

Using that (1u0, 1v0) is also comparable to (1x∗, 1y∗), we obtain that (1un, 1vn) is comparable to (1x∗, 1y∗).
By (4.1) and (4.4), we get

d(1un+1, 1x) = d
(
F(un, vn),F(x, y)

)
≤
αd(1un,F(un, vn))d(1x,F(x, y))

1 + d(1un, 1x)

+ βd(1un, 1x) + γ
[
d(1un,F(un, vn)) + d(1x,F(x, y))

]
+ δ

[
d(1un,F(x, y)) + d(1x,F(un, vn))

]
≤ βd(1un, 1x) + γd(1un, 1un+1) + δ

[
d(1un, 1x) + d(1x, 1un+1)

][
1 − (γs + δ)

]
d(1un+1, 1x) ≤ (β + γs + δ)d(1un, 1x)

d(1un+1, 1x) ≤
β + γs + δ

1 − (γs + δ)
d(1un, 1x)

...

≤

( β + γs + δ

1 − (γs + δ)

)n
d(1u, 1x)→ 0 as n→∞.

Also, we have

d(1y, 1vn+1) = d
(
F(y, x),F(vn,un)

)
≤
αd(1y,F(y, x))d(1vn,F(vn,un))

1 + d(1y, 1vn)

+ βd(1y, 1vn) + γ
[
d(1y,F(y, x)) + d(1vn,F(vn,un))

]
+ δ

[
d(1y,F(vn,un)) + d(1vn,F(y, x))

]
≤ βd(1y, 1vn) + γd(1vn, 1vn+1) + δ

[
d(1y, 1vn+1) + d(1vn, 1y)

]
≤
β + γs + δ

1 − (γs + δ)
d(1y, 1vn)

...

≤

( β + γs + δ

1 − (γs + δ)

)n
d(1y, 1v)→ 0 as n→∞.

Thus,
lim
n→∞

d(1un, 1x) = lim
n→∞

d(1vn, 1y) = 0.

By a similar way we can prove that

lim
n→∞

d(1un, 1x∗) = lim
n→∞

d(1vn, 1y∗) = 0.

By the uniqueness of the limit, we obtain 1x = 1x∗ and 1y = 1y∗.

Therefore, F and 1 have a unique point of coincidence (1x, 1y), that is 1(g(F, 1)) = {(1x, 1y)}. Furthermore, if
F and 1 are w−compatible then we have

12x = 1(F(x, y)) = F(1x, 1y) and 12y = 1(F(y, x)) = F(1y, 1x).

That is (1x, 1y) is another coupled coincidence point for F and 1, i.e., (12x, 12y) ∈ 1(g(F, 1)). By the uniqueness
of the point of coincidence, we obtain

1x = 12x = F(1x, 1y) and 1y = 12y = F(1y, 1x). (4.5)
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Hence, (w1,w2) = (1x, 1y) is a coupled common fixed point for F and 1.
Now we will claim the uniqueness of this coupled common fixed point. Suppose that (z1, z2) is another
coupled common fixed point of F and 1. Thus,

z1 = 1z1 = F(z1, z2) and z2 = 1z2 = F(z2, z1). (4.6)

Therefore, (z1, z2) is point of coincidence of F and 1. Since (w1,w2) is the unique point of coincidence, then
we have z1 = w1 and z2 = w2. Hence (w1,w2) is a unique coupled common fixed point of F and 1.
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[12] L. Ćirić, Fixed point theorems for multi-valued contractions in complete metric spaces, Nonlinear Anal. 348 (2008), no. 1, 499–507.
[13] , Multi-valued nonlinear contraction mappings, J. Math. Anal. Appl. 71 (2009), 2716–2723.
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