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Abstract
In this work, we propose three chaotic (or hyperchaotic)models. Thesemodels are real or complex
with one stable equilibriumpoint (hidden attractor). Based on amodified Sprott Emodel, three
versionswere introduced: the complex integer order, the real fractional order, and the complex
fractional order. The basic properties of thesemodels have been studied.We discover that the complex
integer-order version has chaotic and hyperchaoticmulti-scroll hidden attractors (MSHAs) by
computing Lyapunov exponents (LEs). Bymaking a small change to amodel parameter, different
MSHAvalues can be produced for this version. The dynamics of the real fractional version are
investigated through a bifurcation diagram and LEs. It has chaotic hidden attractors for various
fractional-order q values. Through varying themodel parameters of the complex fractional-order
(FO) version, different numbers of chaoticMSHAs can be generated. Due to the complex dynamic
behaviours of theMSHAs, thesemodelsmay have several applications in physics, secure
communications, social relations and image encryption. A new kind of combination synchronization
(CS) between one integer-order drivemodel and two FO responsemodels with different dimensions is
proposed. The tracking controlmethod is used to investigate a scheme for this type of synchronization.
As an example, we used our threemodels to test the validity of this scheme, and an agreement between
the analytical and numerical results was found.

1. Introduction

Over the past few decades, a great deal of research has been done on chaotic systems in real-worldmodels. These
models appear inmany important applications in neural networks, image encryption, secure communication,
and physics [1–5]. Complex nonlinear dynamicalmodels have beenwidely studied and investigated in the
literature [6]. They have been applied in secure communication, where the doubling of the number of variables
that need to be decipheredwhen one is using a chaoticmodel to transmit coded information [7].While the
complex dynamicalmodels with fractional order have been introduced and studied, e.g. ([8, 9], and references
therein). According to Shilnikovʼs criteria [10], there is a relation between chaotic attractors and the equilibria of
theirmodels. The existence of at least one unstable equilibriumpoint in dissipative dynamicalmodels is a
necessary requirement for chaos. However, in light of the discovery of hidden attractors, the conventional
Shilnikov criteria have to be applied in order to confirm chaos. An attractor is referred to as a hidden attractor if
its attraction basin does not overlap any small neighbourhoods of an equilibriumpoint; otherwise, it is referred
to as a self-excited attractor [11, 12]. Both in theory and in reality, hidden attractors are extremely important.
Newphenomena in nonlinear dynamicalmodels, such as theNon-Sil’nikov type of chaos,may be discovered by
studying hidden attractors. In the last decade, have constructed numerous hidden chaoticmodel attractors
([13], and references there in).
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Wang andChen [14] presented a 3Dhidden attractor of Sprott Emodel [15] as follows:
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where x, y, and z are state variables, a is constant parameter, and dots represent time derivatives. There exist
many dynamicalmodels in various fields [16–23]. Huang andBae [16] presented the chaotic FO lovemodel. The
chaotic FORomeo and Juliet with an external force or external environment was studied [17]. Different cases of
image encryption for chaotic dynamical systemswere investigated [18–23].

Multi-scroll hidden attractors (MSHAs) have attracted extensive research interest [14, 24, 25]. So far,
MSHAs topic is an open field of research. ThefirstMSHA [26]was created by adding a nonlinear resistor with
numerous breakpoints to the original Chuaʼs circuit. The topological structures of theMSHAhave been nested,
and its trajectories jumpon several scrolls in the phase space [24, 25]. The chaoticmulti-scroll approach offers
stronger security andmore complex dynamic properties [27]. TheMSHAs for newmodels are presented in
[28, 29]. Piecewise linear functions are used to produce themulti-scroll attractor. Using Signumand step
functions,Wang andXiao [30] studiedmulti-scroll chaotic attractors. Li-Quan et al [31] investigated Julia fractal
based on themulti-scrollmemristive chaoticmodel. As a result,MSHAs have received increased attention in
recent years.

The synchronization ofmodels withmultiple drive and responsemodels is fascinating and significant
because transmitted signalsmay have greater anti-translation and anti-attack capabilities. The complexity of the
driving signals and their generation are equally important aspects to consider, as is communication security.
Researchers looked into complexmodels for transmitting data signals. Recently, fractionalmatrix projective CS
has been accomplished among complicated FO chaoticmodels [32]. Zerimeche et al [33] introducedCS of
different dimensions for FO chaoticmodels using a scalingmatrix. Themodulusmodulus combination
synchronization between three complexmodels is investigated byMahmoud et al [34]. In this paper, we
investigate CS using one integer-order drivemodel and two FO responsemodels with different dimensions. This
type of synchronization has important applications like secure communication, signal processing and safe
information.

Themain objectives of our paper are stated as: we propose the complex integer, real fractional and complex
fractional orders versions of themodel (1.0.1). The dynamics of thesemodels, such as equilibriumpoints,
stability, symmetry and hidden attractors are studied. By varying parameters, Yan et al [35] investigated different
numbers of chaoticMSHAs for the real FOmodel. As a result, we extend thework of Ref. [35] for complex
integer and fractional ordermodels in this paper. For a small change of our parameters, we get different numbers
of chaoticMSHAs for complex integer and fractional orders of themodel (1.0.1). This propertymakes our
modelsmore secure, and it has great significance inmany fields such as secure communication and image
encryption. The range of the parameter a at which the complex FO formofmodel (1.0.1) has chaotic hidden
attractors is larger than the range of the parameter a at which the complex integer-order formofmodel (1.0.1)
has chaotic hidden attractors. A new type of combination synchronization (CS) is introduced. A scheme to
achieve this new type of CS is presented.

This paper is organized as follows. Section 2 proposes the complex integer-order version ofmodel (1.0.1).
We investigate its dynamics and different numbers of chaotic and hyperchaoticMSHAs by varying the
parameter a. The FO formofmodel (1.0.1) is given in section 3. The bifurcation diagram is plotted for this
model. In section 4, we introduce the FO formof themodel of section 2. This version has awider range of chaotic
attractors than the integer version. Section 5 contains the combination synchronization and its scheme to
achieve it. There is good agreement between the numerical and analytical calculations. Section 6 contains our
paperʼs conclusion and futurework.

2. Basic properties of the complex formofmodel (1.0.1)

In this sectionwe introduce the complex formofmodel (1.0.1)which is:
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where x= u1+ iu2 and y= u3+ iu4 are complex variables, z= u5 is real variable, i 1= - and x denotes
complex conjugate of x, a> 0. The real version ofmodel (2.0.1) reads:
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2.1. Lyapunov exponents and Lyapunov dimension
Since (2.0.2) is a 5-Dmodel, it has afive LEsμr, r= 1, 2 ,..., 5, whichmay calculated as follows:model (2.0.2) in
matrix form is:

U t f U t ; , 2.1.1x= ( ) ( ( ) ) ( )

where,U t u t u t u t u t u t, , , , T
1 2 3 4 5=( ) ( ( ) ( ) ( ) ( ) ( )) is the solutionwewish to determine, f f f f f f, , , , T

1 2 3 4 5= ( ) ,
ξ is a set of parameters andT denotes transpose. The equations governing small deviations δU about the
trajectoryU(t) are
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The LEs of a dynamicalmodel are given in [36, 37]. Numerically all the LEs values are computed byWolf
algorithm [38].
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where δur(0), δur(t) are deviation vectors from the given orbit, at times t= 0 and t> 0, respectively.
The Lyapunov dimension of the solution ofmodel (2.0.2) is defined according toKaplan-Yorke conjecture

as [39]:
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2.2.Dynamics ofmodel (2.0.2)
Model (2.0.2) is symmetric about the coordinates u2, u4 and dissipative for all values of parameter a since
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The characteristic equation of JE0
is written as:

f a a a a a2 16 1.25 16 0.5 64 2 0.25 2 . 2.2.25 4 3 2 2l l l l l l= + + + + + + + + +( ) ( ) ( ) ( ) ( )

FromRouthHurwitz stability criterion, it is clear that if a> 0, thenE0 is stable. For the choice a= 0.03, then the
corresponding eigenvalues ofE0 areλ1=− 0.782174,λ2=− 0.6,λ3=− 0.4, and
λ4,5=− 0.108913± 0.554761i.

2.3.Multi-scroll chaotic and hyperchaotic hidden attractors formodel (2.0.2)
In this subsectionwe discuss the effect of parameter a inmodel (2.0.2) to get different chaotic and hyperchaotic
MSHAs. The LEs (2.1.4) formodel (2.0.2) for the initial conditions u 2,1, 3,2,9 T

0 = ( ) and a ä [0, 0.15] are
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computed.Model (2.0.2) has hyperchaoticMSHAs for a= 0.049, 0.075, 0.099, 0.101, 0.111, 0.117, and 0.144,
while it has chaoticMSHAs for the remain values of parameters aä [0, 0.15] as shown infigure 1. If we choose
different positive values of a and the same initial conditions infigure 1, theMSHAs are plotted infigure 2 in (u2,
u3) space. Figure 2(a) shows chaotic 2-scroll hidden attractors for a= 0.0364, while 4-scroll hidden attractors for
thismodel is shownfigure 2(b)when a= 0.03644. Infigure 2(c), 6-scroll hidden attractors is depicted for
a= 0.0988 and 10-scroll hidden attractors when a= 0.037 is given infigure 2 (d). For the choice a= 0.049 for
model (2.0.2), the corresponding LEs are:μ1= 1.0802,μ2= 0.5712,μ3=− 0.3512,μ4=− 1.5509, and
μ5=− 1.7478 and the Lyapunov dimension (2.1.5) isD= 3.8384. Figure 3 contains the hyperchaoticMSHAs
(6-scroll) for a= 0.049.

Remark 2.1.Wenoticed that the complex formofmodel (1.0.1) has rich dynamics than the real one, different
chaotic and hyperchaoticMSHAs are appeared only in complexmodel (2.0.1). The range of the parameter a of
chaoticMSHAs formodel (2.0.1) is bigger than the one of real form (1.0.1) [14].

Figure 1.The LEs versus a ä [0, 0.15] formodel (2.0.2).

Figure 2.ChaoticMSHAs (2, 4, 6 and 10) formodel (2.0.2): (a) 2-scroll hidden attractors with a = 0.0364, (b) 4-scroll hidden
attractors with a = 0.03644, (c) 6-scroll hidden attractors with a = 0.0988, and (d) 10-scroll hidden attractors with a = 0.037.
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Remark 2.2.The complexmodel (2.0.1)has chaotic and hyperchaoticMSHAs, whilemodel (1.0.1) has only
chaotic ones. The security of the sent communicationsmay improvewithmoremodel variables.

3. The FOversion ofmodel (1.0.1)

The FO formofmodel (1.0.1) is:
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where cD q is the Caputo fractional derivatives [40].Model (3.0.1) is not symmetric, but it is dissipative for all

values of a. Thismodel has only one equilibriumpoint E a, , 16
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16
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polynomial ofE1 is:

f a8 0.25 0.25. 3.0.23 2l l l l= + + + +( ) ( ) ( )
The equilibriumpointE1 is stable if arg k

q

2
l > p∣ ( )∣ , k= 1, 2, 3. For example if a> 0, thenE1 is stable.

Using AdamBashforthMolutonmethod [41], the results ofmodel (3.0.1) are stated. The chaotic attractor for
thismodel for q= 0.99 and a= 0.003 is appeared infigures 4(a)–(b) in 3 and 2-spaces, respectively although it
has only one stable equilibriumpoint. The bifurcation diagram formodel (3.0.1)with q= 0.99 for aä [0, 0.047]
is plotted infigure 4(c). Figure 4(d) shows the largest Lyapunov exponent (themaximumvalue of (2.1.4)) for
model (3.0.1) versus q ä [0.9, 1].

Remark 3.1.The security in the fractionalmodel (3.0.1) is complicated than the integermodel (1.0.1) because it
has the fractional parameter q beside the parameter a. Increasing themodel parameters increased the security of
the transmitted signals [7].

4. The complex FOofmodel (1.0.1)

The FOversion ofmodel (2.0.2) can bewritten as:
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Figure 3.Hyperchaotic 6-scroll hidden attractors formodel (2.0.2) for a = 0.049.
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The dynamics ofmodel (4.0.1) is the same as of themodel (2.0.2) except the stability conditionwhich is
arg r

q

2
l > p∣ ( )∣ , r= 1, 2,...,5. This conditionmakes the region of stability in FOdynamicalmodel is larger than

integer version as shown infigure 5.
In numerical simulation, the LEs formodel (4.0.1) are plotted infigure 6. Figure 6(a) shows the LEs versus

qä [0.99, 1], while the LEs versus a ä [0, 10] are presented infigure 6(b). ChaoticMSHAswith 4, 6, 8 and 10
scrolls formodel (4.0.1)with a= 32 and the initial conditions u 1,2, 3,4,5 T

0 = ( ) are depicted infigures 7(a)–(d)
for q= 0.992, 0.9943, 0.995, 0.99517, respectively. For another value of q= 0.99516, 16-scroll hidden attractors
is found and it is shown infigure 8.

By fixing q= 0.995 and varying the parameter awith the same initial conditions as infigure 8 formodel
(4.0.1), we getMSHAswith 2, 4, 6, and 8 scrolls as shown infigure 9.

Remark 4.1. It is noted that by choosing appropriate values of themodel parameters q and a, one can obtain
different numbers of chaoticMSHAs.

Remark 4.2. It is clear that fromfigure 1 andfigure 6(b) the region of parameter a at whichmodel (4.0.1) has
chaoticMSHAs is larger than one formodel (2.0.2).

Figure 4. Formodel (3.0.1): (a) the chaotic attractor for q = 0.99 and a = 0.003 in (x, y, z) space, (b) in (y, z) space, (c) the bifurcation
diagram for a ä [0, 0.047], (d) the largest Lyapunov exponent versus q ä [0.9, 1].

Figure 5. Stability region of a FOmodel with order 0 < q < 1.
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Remark 4.3.Model (2.0.2) has hyperchaotic attractors while its FO version (4.0.1) does not.

Remark 4.4.Ourmodel (4.0.1)has a chaotic 16-scroll hidden attractor, while themodel (2.0.2)does not have it.

Remark 4.5.TheMSHAs appeared only formodel (2.0.2) and (4.0.1).

5. Combination synchronization (CS) between one integer-order and two FOmodels with
different dimensions

Based on the tracking controlmethod [42], the CS between one integer-order and two FOmodels with different
dimensions is presented. The one integer-order and two FOmodels can bewritten, respectively, as:

u f u t u R, , 5.0.1n= Î ( ( )) ( )

Figure 6.The LEs formodel (4.0.1) versus: (a) q ä [0.99, 1], (b) a ä [0, 10].

Figure 7.ChaoticMSHAswith 4, 6, 8 and 10 scrolls formodel (4.0.1)with a = 32 by setting different values of aq: (a) q = 0.992, (b)
q = 0.9943, (c) aq = 0.995, and (d) q = 0.99517.

7

Phys. Scr. 98 (2023) 045223 TMAbed-Elhameed et al



D v g v t v

D w h w t w

R

R

, , ,

, , , 5.0.2

c q m

c q l

h h

z z

= + Î

= + Î

( ( ))
( ( )) ( )

where, u u u u, ,..., n
T

1 2= ( ) , v v v v, ,..., m
T

1 2= ( ) and w w w w, ,..., l
T

1 2= ( ) are the state vectors ofmodels
(5.0.1)–(5.0.2), , ,..., m

T
1 2h h h h= ( ) , , ,..., l

T
1 2z z z z= ( ) , are the vector of control functionswhich is a function

of u, v,w andT denotes the transpose.

Definition 5.1.TheCS between the one integer-order drivemodel (5.0.1) and the two FO responsemodels
(5.0.2)with different dimensions can be achieved if:

e M v M w M ulim lim 0, 5.0.3
t t

1 2 3= + - =
¥ ¥

    ( )

where, the constantmatrices M R Rn m
1 Î ´ , M R Rn l

2 Î ´ , M R Rn n
3 Î ´ , · is thematrix norm and e RnÎ

is the synchronization error.

Remark 5.1. If n m l= = and q= 1 in the two responsemodels (5.0.2), we obtain theCS formodels that share
the same dimension as those that have been researched in the literature [43, 44].

Figure 8. 16-scroll hidden attractors formodel (4.0.1) for a = 32 and q = 0.99516.

Figure 9.ChaoticMSHAswith 2, 4, 6, and 8 scrolls formodel (4.0.1)with q = 0.995 for different values of a: (a) a = 6.6, (b) a = 5, (c)
a = 4.3, and (d) a = 3.8.
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Remark 5.2. If q= 1 in the two responsemodels (5.0.2), we get the CS between three integer-ordermodels with
the different dimension [45].

Remark 5.3. If n=m in themodels (5.0.1)–(5.0.2), M M,1 2 are n n´( ) identitymatrices andw= 0 in the error
model (5.1), we get the complete synchronization between the integer-order and FOmodels [46].From the
responsemodels (5.0.2), one can get

M D v M D w M g v t M h w t U , 5.0.4c q c q
1 2 1 2+ = + +( ( )) ( ( )) ( )

whereU=M1η+M2ζ= ρ(u)+ τ(u, v,w) is the control functions, τ: Rn× Rm× Rl⟶ Rn is a vector function,
and later it will be define, and ρ(u) ä Rn is a compensation control given by:

u M D u f M u . 5.0.5c q
3 3r = -( ) ( ) ( )

Using equations (5.0.4)–(5.0.5), the errormodel between the integer-order derivemodel (5.0.1) and the FO
responsemodels (5.0.2) can be obtained as follows:

D e M g v M h w f M u u v w, , . 5.0.6c q
1 2 3 t= + - +( ) ( ) ( ) ( ) ( )

If themodel of error (5.0.6) is asymptotically stable, the CS between the drivemodel (5.0.1) and the response
models (5.0.2) can be hold. To construct the analytical formula for the vector function τ(u, v,w) for which the
errormodel (5.0.6) is asymptotically stable, the following theorem is introduced.

Theorem5.1.CS of one integer-order drivemodel (5.0.1) and two FO responsemodels (5.0.2) will be achieved if the
control functions u v w, ,t ( ) are designed as follows:

u v w f M u M g v M h w Ke, , , 5.0.73 1 2t = - - -( ) ( ) ( ) ( ) ( )

where, K R Rn nÎ ´ is the control gainmatrix.

Proof. Let the Lyapunov function beV e t e t e t1 2 T=( ( )) ( ) ( ), then

D V e t D e t e t1 2 . 5.0.8c q c q T=( ( )) { ( ) ( )} ( )

According to remark 1 in [47], we have

D V e t e t D e t . 5.0.9c q T c q( ( )) ( ) ( ) ( )

It follows from equations (5.0.6), (5.0.7) and (5.0.9) that

D V e t Ke t e t

e t e t , 5.0.10

c q T

T
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-
-




( ( )) ( ) ( )
( ) ( ) ( )

where minl is theminimumeigenvalue ofK. Then it follows from theorem1 [47] that e tlim 0t =¥ ( ) . ,

5.1. An example
An illustration is provided in this subsection to demonstrate the validity of the analytical results of our theorem
5.1.We assume the 5D integer-ordermodel (2.0.2) is the drivemodel and the 3DFOmodel (3.0.1) and 5DFO
model (4.0.1) are the responsemodels. The 3D and 5D responsemodels can bewritten after adding the control
functions, respectively, as:
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whereU=M1η+M2ζ= ρ(u)+ τ(u, v,w) is the control functions,U U U U U U, , , , T
1 2 3 4 5= ( ) ,

, , T
1 2 3h h h h= ( ) , , , , , T

1 2 3 4 5z z z z z z= ( ) ,M1ä R5×3,M2ä R5×5 are two constantmatrices, and ρ(u), τ(u, v,
w) ä R5.
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For the choice M

1 0 0
0 1 1
1 0 1
0 1 2
0 0 1

1 =
-

-

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,M2=M3= I5×5, where I5×5 is (5× 5) identitymatrix, andK= diag(1,

2, 3, 4, 5), the vector function τ(u, v,w) can be obtained from theorem5.1 as:

u v w

u u v v w w a e

u u v v v w w e

u u u v v v w w w a e

u u u v v v w w w e
u v w e

, ,

4 1 2

4 1 3

2 8 2 2 4
4 4 4 1 5

, 5.1.3

3 5 2 3 3 5 1

4 5 1
2

2 1 4 5 2

1
2

2
2

3 2 3 1 1
2

2
2

3 3

1 2 4 1
2

2 1 1 2 4 4

1 1 1 5

t =

- - - -
- + - - + -

- - - + - + + - - -

- + - + - + - -
- + + - -

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

( ) ( )

where e1≡ r1− d1= (v1+ w1)− u1, e2≡ r2− d2= (v2− v3+ w2)− u2, e3≡ r3− d3= (v1+ v3+ w3)− u3,
e4≡ r4− d4= (− v2+ 2v3+ w4)− u4 and e5≡ r5− d5= (v3+ w5)− u5.

In numerical simulation, we usedRunge-Kuttamethod of order 4 and PECE
(PredictorEvoluteCorrectorEvolute)method [41]. If we take a= 0.075, q= 0.995 and the initial conditions of
the integer-order drivemodel (2.0.2) and the two FO responsemodels (5.1.1)–(5.1.2) are, respectively,
u 2,1, 3,2,9 T

0 = ( ) , v 1,2,2 T
0 = ( ) and w 1.1, 1.2, 0.3, 2.2, 6.5 T

0 = -( ) as an example. The results of CS of our
models are given infigures 10–11. Figure 10 shows the projection (3D) of the solution of the integer-order drive
model (2.0.2) and the two FO responsemodels (5.1.1)–(5.1.2) after synchronization. The synchronization errors
converge zero as depicted infigure 11.

6. Conclusion and futurework

Models (2.0.2), (3.0.1) and (4.0.1)with chaotic and hyperchaotic hidden attractors are introducedwhich have
rich dynamics. Thesemodels have only one stable equilibrium. Firstly, we proposed the hyperchaotic complex
integermodel (2.0.2). Thismodel has 2, 4, 6, and 10 scrolls hidden attractors for a small change in the parameter
a, as shown infigure 2. According to computed LEs, ourmodel, (2.0.2), exhibits hyperchaoticMSHAswhile the
integer version, (1.0.1), does not (see figure 4). Secondly,model (3.0.1) is presentedwhich is the fractional
version ofmodel (1.0.1). The security provided by thismodel ismore complicated than that provided by the
integer one (1.0.1) due to the availability of the fractional parameter q. Furthermore, the basic properties of this
model are investigated using phase diagrams, bifurcation diagrams, and LEs, as shown infigure 4. Finally, the FO
complexmodel (4.0.1) is given. It is found that thismodel has one stable equilibriumpoint and is very sensitive
to itsmodel parameters a (a> 0) and q.We provide ourfindings forMSHAs of thismodel infigures 7–9. As
illustrated infigures 1 andfigure 6(b), the parameter a interval at whichmodel (4.0.1) contains chaoticMSHAs is
bigger than the one formodel (2.0.2). TheMSHAs exist only for the complex integer-ordermodel (2.0.2) and the
complex FOmodel (4.0.1).We introduce theCS between one integer-order drivemodel and two FO response

Figure 10.Chaotic solutions for (a) the integer-order drivemodel (2.0.2) in (d3, d2, d4) space and (b) the two FO responsemodels
(5.1.1)–(5.1.2) in (r3, r2, r4).
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models with different dimensions as a new kind of synchronization. The tracking controlmethod is used to
present a scheme of this kind of synchronization. As an example of our technique, we present theCS between the
integer-order drivemodel (2.0.2) and the two FO responsemodels (5.1.1)–(5.1.2). The numerical results of CS of
ourmodels are shown infigures 10–11 and a good agreement is foundwith the analytical ones. Thesemodels
may have applications in physics, image encryption and secure communication.

We are currently working to expand these findings to include time delay for our systems (2.0.2), (3.0.1)
and (4.0.1).
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