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Abstract

In this work, we propose three chaotic (or hyperchaotic) models. These models are real or complex
with one stable equilibrium point (hidden attractor). Based on a modified Sprott E model, three
versions were introduced: the complex integer order, the real fractional order, and the complex
fractional order. The basic properties of these models have been studied. We discover that the complex
integer-order version has chaotic and hyperchaotic multi-scroll hidden attractors (MSHAs) by
computing Lyapunov exponents (LEs). By making a small change to a model parameter, different
MSHA values can be produced for this version. The dynamics of the real fractional version are
investigated through a bifurcation diagram and LEs. It has chaotic hidden attractors for various
fractional-order g values. Through varying the model parameters of the complex fractional-order
(FO) version, different numbers of chaotic MSHASs can be generated. Due to the complex dynamic
behaviours of the MSHAs, these models may have several applications in physics, secure
communications, social relations and image encryption. A new kind of combination synchronization
(CS) between one integer-order drive model and two FO response models with different dimensions is
proposed. The tracking control method is used to investigate a scheme for this type of synchronization.
As an example, we used our three models to test the validity of this scheme, and an agreement between
the analytical and numerical results was found.

1. Introduction

Opver the past few decades, a great deal of research has been done on chaotic systems in real-world models. These
models appear in many important applications in neural networks, image encryption, secure communication,
and physics [1-5]. Complex nonlinear dynamical models have been widely studied and investigated in the
literature [6]. They have been applied in secure communication, where the doubling of the number of variables
that need to be deciphered when one is using a chaotic model to transmit coded information [7]. While the
complex dynamical models with fractional order have been introduced and studied, e.g. ([8, 9], and references
therein). According to Shilnikov’s criteria [10], there is a relation between chaotic attractors and the equilibria of
their models. The existence of at least one unstable equilibrium point in dissipative dynamical models is a
necessary requirement for chaos. However, in light of the discovery of hidden attractors, the conventional
Shilnikov criteria have to be applied in order to confirm chaos. An attractor is referred to as a hidden attractor if
its attraction basin does not overlap any small neighbourhoods of an equilibrium point; otherwise, it is referred
to as a self-excited attractor [11, 12]. Both in theory and in reality, hidden attractors are extremely important.
New phenomena in nonlinear dynamical models, such as the Non-Sil’'nikov type of chaos, may be discovered by
studying hidden attractors. In the last decade, have constructed numerous hidden chaotic model attractors
([13], and references there in).

©2023 IOP Publishing Ltd
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Wang and Chen [14] presented a 3D hidden attractor of Sprott E model [15] as follows:

X=yz+ a,
y=x"=y
z=1— 4x, (1.0.1)

where x, y, and zare state variables, a is constant parameter, and dots represent time derivatives. There exist
many dynamical models in various fields [16-23]. Huang and Bae [16] presented the chaotic FO love model. The
chaotic FO Romeo and Juliet with an external force or external environment was studied [17]. Different cases of
image encryption for chaotic dynamical systems were investigated [ 18-23].

Multi-scroll hidden attractors (MSHASs) have attracted extensive research interest [14, 24, 25]. So far,
MSHAs topic is an open field of research. The first MSHA [26] was created by adding a nonlinear resistor with
numerous breakpoints to the original Chua’s circuit. The topological structures of the MSHA have been nested,
and its trajectories jump on several scrolls in the phase space [24, 25]. The chaotic multi-scroll approach offers
stronger security and more complex dynamic properties [27]. The MSHAs for new models are presented in
[28,29]. Piecewise linear functions are used to produce the multi-scroll attractor. Using Signum and step
functions, Wang and Xiao [30] studied multi-scroll chaotic attractors. Li-Quan et al [31] investigated Julia fractal
based on the multi-scroll memristive chaotic model. As a result, MSHAs have received increased attention in
recent years.

The synchronization of models with multiple drive and response models is fascinating and significant
because transmitted signals may have greater anti-translation and anti-attack capabilities. The complexity of the
driving signals and their generation are equally important aspects to consider, as is communication security.
Researchers looked into complex models for transmitting data signals. Recently, fractional matrix projective CS
has been accomplished among complicated FO chaotic models [32]. Zerimeche et al [33] introduced CS of
different dimensions for FO chaotic models using a scaling matrix. The modulusmodulus combination
synchronization between three complex models is investigated by Mahmoud et al [34]. In this paper, we
investigate CS using one integer-order drive model and two FO response models with different dimensions. This
type of synchronization has important applications like secure communication, signal processing and safe
information.

The main objectives of our paper are stated as: we propose the complex integer, real fractional and complex
fractional orders versions of the model (1.0.1). The dynamics of these models, such as equilibrium points,
stability, symmetry and hidden attractors are studied. By varying parameters, Yan et al [35] investigated different
numbers of chaotic MSHAs for the real FO model. As a result, we extend the work of Ref. [35] for complex
integer and fractional order models in this paper. For a small change of our parameters, we get different numbers
of chaotic MSHA s for complex integer and fractional orders of the model (1.0.1). This property makes our
models more secure, and it has great significance in many fields such as secure communication and image
encryption. The range of the parameter a at which the complex FO form of model (1.0.1) has chaotic hidden
attractorsis larger than the range of the parameter a at which the complex integer-order form of model (1.0.1)
has chaotic hidden attractors. A new type of combination synchronization (CS) is introduced. A scheme to
achieve this new type of CSis presented.

This paper is organized as follows. Section 2 proposes the complex integer-order version of model (1.0.1).
We investigate its dynamics and different numbers of chaotic and hyperchaotic MSHAs by varying the
parameter a. The FO form of model (1.0.1) is given in section 3. The bifurcation diagram is plotted for this
model. In section 4, we introduce the FO form of the model of section 2. This version has a wider range of chaotic
attractors than the integer version. Section 5 contains the combination synchronization and its scheme to
achieve it. There is good agreement between the numerical and analytical calculations. Section 6 contains our
paper’s conclusion and future work.

2. Basic properties of the complex form of model (1.0.1)

In this section we introduce the complex form of model (1.0.1) which is:

X=yz+ a,
y=x*=y,
z=1-2x+ %), (2.0.1)

where x = u; + iu, and y = u3 + iu, are complex variables, z = us is real variable, i = +/—1 and X denotes
complex conjugate of x, a > 0. The real version of model (2.0.1) reads:
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U] = usus + a,

Uy = Uqlls,

s = uf — uj — u,

M.4 = 21/{11/12 — Uy,

Us =1 — 4du,. (2.0.2)

2.1.Lyapunov exponents and Lyapunov dimension
Since (2.0.2) isa 5-D model, ithas a five LEs y,, r = 1, 2 ,..., 5, which may calculated as follows: model (2.0.2) in
matrix form is:

U@ =fU®; &), (2.1.1)

where, U (t) = (u(t), ts(t), us(t), us(t), us(t))" is the solution we wish to determine, f = (f,, f3, 5> fy» /)5
Eisaset of parameters and T denotes transpose. The equations governing small deviations U about the

trajectory U(t) are
UM = M j(U@); 68U,  rj = 1,2,.,5 (2.1.2)
where, M,; = Zf’ is the Jacobian matrix:
uj

0 0 us 0 us
0 0 0 Us Uy
M,j=|2u, —2u, —1 0 O | (2.1.3)
2142 21/[1 0 -1 0
-4 0 0 0 O

The LEs of a dynamical model are given in [36, 37]. Numerically all the LEs values are computed by Wolf
algorithm [38].
1 o]

W, = lim

s 2.1.4
T 6w ) @19

where 6u,(0), 6u,(¢) are deviation vectors from the given orbit, at times t = 0 and t > 0, respectively.
The Lyapunov dimension of the solution of model (2.0.2) is defined according to Kaplan-Yorke conjecture
as[39]:

M
PPy

D = M+ >
|HM+1|

(2.1.5)

where M is the largest integers.t. > 1, > 0and >M*% ! i, < 0.

2.2. Dynamics of model (2.0.2)
Model (2.0.2) is symmetric about the coordinates u,, 1, and dissipative for all values of parameter a since

V.f= %—i— % + ... —|—% = — 2 < 0. This model has one equilibrium point Ey = (i, 0, i, 0, —16a> .The
1 2

5
Jacobian matrix of model (2.0.2) at Ej is:

0 0 —16a 0 1/16
00 0 —l6a O
1

-0 -1 0 0

e =| 2 @.2.1)
o L o 1 o
2
—40 0 0 0

The characteristic equation of Jg, is written as:
fO) =X + 2X + (16a + 1.25) N + (16a + 0.5) X + (64a* + 2a + 0.25)\ + 2a. (2.2.2)

From RouthHurwitz stability criterion, it is clear that if a > 0, then Ej, is stable. For the choice a = 0.03, then the
corresponding eigenvalues of Egare A} = — 0.782174, A, = — 0.6, A\ = — 0.4, and
Ags=—0.108913 £ 0.5547611.

2.3. Multi-scroll chaotic and hyperchaotic hidden attractors for model (2.0.2)
In this subsection we discuss the effect of parameter a in model (2.0.2) to get different chaotic and hyperchaotic
MSHAs. The LEs (2.1.4) for model (2.0.2) for the initial conditions 1, = (2,1, 3,2,9)" anda € [0,0.15] are
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0 0.06 2 0.1 0.15

Figure 1. The LEs versus a € [0, 0.15] for model (2.0.2).

Figure 2. Chaotic MSHAs (2, 4, 6 and 10) for model (2.0.2): (a) 2-scroll hidden attractors with a = 0.0364, (b) 4-scroll hidden
attractors with a = 0.03644, (c) 6-scroll hidden attractors with a = 0.0988, and (d) 10-scroll hidden attractors with a = 0.037.

computed. Model (2.0.2) has hyperchaotic MSHAs for a = 0.049, 0.075,0.099,0.101,0.111,0.117, and 0.144,
while it has chaotic MSHAs for the remain values of parameters a € [0, 0.15] as shown in figure 1. If we choose
different positive values of a and the same initial conditions in figure 1, the MSHAs are plotted in figure 2 in (u,,
us) space. Figure 2(a) shows chaotic 2-scroll hidden attractors for a = 0.0364, while 4-scroll hidden attractors for
this model is shown figure 2(b) when a = 0.03644. In figure 2(c), 6-scroll hidden attractors is depicted for

a =0.0988 and 10-scroll hidden attractors when a = 0.037 is given in figure 2 (d). For the choice a = 0.049 for
model (2.0.2), the corresponding LEs are: y1; = 1.0802, i, = 0.5712, 13 = — 0.3512, py = — 1.5509, and

s = — 1.7478 and the Lyapunov dimension (2.1.5) is D = 3.8384. Figure 3 contains the hyperchaotic MSHAs
(6-scroll) for a = 0.049.

Remark 2.1. We noticed that the complex form of model (1.0.1) has rich dynamics than the real one, different
chaotic and hyperchaotic MSHASs are appeared only in complex model (2.0.1). The range of the parameter a of
chaotic MSHASs for model (2.0.1) is bigger than the one of real form (1.0.1) [14].
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Figure 3. Hyperchaotic 6-scroll hidden attractors for model (2.0.2) for a = 0.049.

Remark 2.2. The complex model (2.0.1) has chaotic and hyperchaotic MSHAs, while model (1.0.1) has only
chaotic ones. The security of the sent communications may improve with more model variables.

3. The FO version of model (1.0.1)

The FO form of model (1.0.1) is:

‘Dix = yz + a,
chy — x2 -9,
‘DIz =1 — 4x, (3.0.1)

where “D?is the Caputo fractional derivatives [40]. Model (3.0.1) is not symmetric, but it is dissipative for all

T . -
1 %, — 16a) . The corresponding characteristic

values of a. This model has only one equilibrium point E; = (4

polynomial of E; is:
f) =X+ X+ (8a+ 025X\ + 0.25. (3.0.2)
The equilibrium point E; is stable if | arg (Ar)| > %, k=1,2,3.For exampleifa > 0, then E| is stable.

Using AdamBashforthMoluton method [41], the results of model (3.0.1) are stated. The chaotic attractor for
this model for g = 0.99 and a = 0.003 is appeared in figures 4(a)—(b) in 3 and 2-spaces, respectively although it
has only one stable equilibrium point. The bifurcation diagram for model (3.0.1) with ¢ = 0.99 for a € [0, 0.047]
is plotted in figure 4(c). Figure 4(d) shows the largest Lyapunov exponent (the maximum value of (2.1.4)) for
model (3.0.1) versus g € [0.9, 1].

Remark 3.1. The security in the fractional model (3.0.1) is complicated than the integer model (1.0.1) because it
has the fractional parameter q beside the parameter a. Increasing the model parameters increased the security of
the transmitted signals [7].

4. The complex FO of model (1.0.1)

The FO version of model (2.0.2) can be written as:
‘Dl = usus + a,
‘Duy = uqus,
‘Dluz = uf — uf — us,
‘Diuy = 2y — Uy,
‘Dius =1 — 4u. (4.0.1)
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Figure 4. For model (3.0.1): (a) the chaotic attractor for ¢ = 0.99 and a = 0.003 in (x, y, z) space, (b) in (¥, z) space, (c) the bifurcation
diagram for a € [0,0.047], (d) the largest Lyapunov exponent versus g € [0.9, 1].
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Figure 5. Stability region of a FO model with order 0 < g < 1.

The dynamics of model (4.0.1) is the same as of the model (2.0.2) except the stability condition which is
[arg(A)| > %, r=1,2,...,5. This condition makes the region of stability in FO dynamical model is larger than
integer version as shown in figure 5.

In numerical simulation, the LEs for model (4.0.1) are plotted in figure 6. Figure 6(a) shows the LEs versus
q € [0.99, 1], while the LEs versus a € [0, 10] are presented in figure 6(b). Chaotic MSHAs with 4, 6, 8 and 10
scrolls for model (4.0.1) with a = 32 and the initial conditions uy = (1,2, 3,4,5)7 are depicted in figures 7(a)—(d)
for g =10.992,0.9943,0.995, 0.99517, respectively. For another value of g = 0.99516, 16-scroll hidden attractors
is found and it is shown in figure 8.

By fixing g = 0.995 and varying the parameter a with the same initial conditions as in figure 8 for model
(4.0.1), we get MSHAs with 2, 4, 6, and 8 scrolls as shown in figure 9.

Remark 4.1. It is noted that by choosing appropriate values of the model parameters g and a, one can obtain
different numbers of chaotic MSHAs.

Remark 4.2. It is clear that from figure 1 and figure 6(b) the region of parameter a at which model (4.0.1) has
chaotic MSHAs is larger than one for model (2.0.2).
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Figure 6. The LEs for model (4.0.1) versus: (a) g € [0.99, 1], (b) a € [0, 10].

Figure 7. Chaotic MSHAs with 4, 6, 8 and 10 scrolls for model (4.0.1) with a = 32 by setting different values of ag: (a) g = 0.992, (b)
q = 0.9943, (c) aqg = 0.995,and (d) ¢ = 0.99517.

Remark 4.3. Model (2.0.2) has hyperchaotic attractors while its FO version (4.0.1) does not.
Remark 4.4. Our model (4.0.1) has a chaotic 16-scroll hidden attractor, while the model (2.0.2) does not have it.

Remark 4.5. The MSHAs appeared only for model (2.0.2) and (4.0.1).

5. Combination synchronization (CS) between one integer-order and two FO models with
different dimensions

Based on the tracking control method [42], the CS between one integer-order and two FO models with different
dimensions is presented. The one integer-order and two FO models can be written, respectively, as:

i = fu@), u € R, (5.0.1)
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Figure 8. 16-scroll hidden attractors for model (4.0.1) fora = 32 and g = 0.99516.
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Figure 9. Chaotic MSHAs with 2, 4, 6, and 8 scrolls for model (4.0.1) with g = 0.995 for different values of a: (a) a = 6.6, (b) a = 5, (¢)
a=43,and(d)a = 3.8.

Div =gv(®) + n, v, n € R”,
Diw = h(w(t)) + ¢, w, ( € R, (5.0.2)

where, u = (g, Up oo Uy s V = (V) V25000 V) and w = (wy, Wy ..., w;)! are the state vectors of models
(5.0.1)=(5.0.2), 7 = (M 1My 5ee0s My, N (e )T, are the vector of control functions which is a function
of u, v, wand T denotes the transpose.

Definition 5.1. The CS between the one integer-order drive model (5.0.1) and the two FO response models
(5.0.2) with different dimensions can be achieved if:

lim ||e|| = lim ||Myv + Myw — Mzu|| = 0, (5.0.3)
t—00 t—00

where, the constant matrices M; € R” x R", M, € R" x R, M; € R" x R", ||-||is the matrixnormand e € R"
is the synchronization error.

Remark5.1.If n = m = [ and q = 1 in the two response models (5.0.2), we obtain the CS for models that share
the same dimension as those that have been researched in the literature [43, 44].
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Remark 5.2. If g = 1 in the two response models (5.0.2), we get the CS between three integer-order models with
the different dimension [45].

Remark 5.3. If n = min the models (5.0.1)—(5.0.2), M;, M, are (n x n)identity matrices and w = 0 in the error
model (5.1), we get the complete synchronization between the integer-order and FO models [46].From the
response models (5.0.2), one can get

M Dy + M;*Diw = Mig(v(t)) + Moh(w(t)) + U, (5.0.4)

where U = M1 + M,( = p(u) + 7(u, v, w) is the control functions, 7: R” x R™ x R’ — R"is avector function,
and later it will be define, and p(u) € R" is a compensation control given by:

p(u) = M;°Dlu — f(Msu). (5.0.5)

Using equations (5.0.4)—(5.0.5), the error model between the integer-order derive model (5.0.1) and the FO
response models (5.0.2) can be obtained as follows:

‘Die = Mig(v) + Myh(w) — f (Msu) + 7(u, v, w). (5.0.6)

If the model of error (5.0.6) is asymptotically stable, the CS between the drive model (5.0.1) and the response
models (5.0.2) can be hold. To construct the analytical formula for the vector function 7(u, v, w) for which the
error model (5.0.6) is asymptotically stable, the following theorem is introduced.

Theorem 5.1. CS of one integer-order drive model (5.0.1) and two FO response models (5.0.2) will be achieved if the
control functions T (u, v, w) are designed as follows:

T(u, v, w) = f(Msu) — Mig(v) — Myh(w) — Ke, (5.0.7)
where, K € R" x R"is the control gain matrix.
Proof. Let the Lyapunov functionbe V (e(t)) = 1/2¢” (t)e(t), then
DIV (e(t)) = D1{1/2eT (t)e(t)}. (5.0.8)
According to remark 1 in [47], we have
DIV (e(t)) < el (t)Dle(t). (5.0.9)
It follows from equations (5.0.6), (5.0.7) and (5.0.9) that

DIV (e(1)) < —Ke' (t)e(t)
< = Amine’ (e (), (5.0.10)

where Apy, is the minimum eigenvalue of K. Then it follows from theorem 1 [47] that lim, . |[e(¥)|| = 0. O

5.1. An example

An illustration is provided in this subsection to demonstrate the validity of the analytical results of our theorem
5.1. We assume the 5D integer-order model (2.0.2) is the drive model and the 3D FO model (3.0.1) and 5D FO
model (4.0.1) are the response models. The 3D and 5D response models can be written after adding the control
functions, respectively, as:

‘Divi = vyvs +a+n,

Divy = v — vy + 75
‘Dlyy =1 — 4v; + ns, (5.1.1)
and
‘Diwy = wsws + a + ¢,
CDqWQ = W4W5s + Cz,
‘Diws = w12 — w22 — w3 + G5
CDqW4 = 2W1W2 — wy + €4,
CDqW5 =1— 4w, + CS’ (512)
where U = M1 + M,( = p(u) + 7(u, v, w) is the control functions, U = (U,, U,, Us, U,, Us)T,

n=p np 1) ¢ = (G & G G LM € R>*°, M, € R**’ are two constant matrices, and p(u), 7(1, v,
w) R,
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Figure 10. Chaotic solutions for (a) the integer-order drive model (2.0.2) in (ds, d,, dy) space and (b) the two FO response models
(5.1.1)~(5.1.2) in (3, rp, 14).

1 0 O
0 1 -1
Forthechoice Mj =|1 0 1 |\M,=M;=I5.s5 wherels,sis(5 x 5)identity matrix, and K = diag(1,
0o —-1 2
0 0 1

2, 3,4, 5), the vector function 7(u, v, w) can be obtained from theorem 5.1 as:
UsUs — VaV3 — W3Ws — d — €]
Ugls — vlz + v, — 4y — wyws + 1 — 2e;
(U, v, w) = ulz — u22 — Uz — V3 + 4v; — le + W22 +ws—a—1— 3es|, (5.1.3)
2uiuy — uy + V12 — vy 4+ 8vi — 2wiw, + wy — 2 — 4dey
—4u; + 4v; + 4w — 1 — Ses

wheree, =r —di=(+w) —upea=r—dy =W, —v3+ W) — Uy, e3 =13 — ds = (V) + v3 + w3) — us,
ey =r4—dy=(—vy+2v3+wy) —usandes = r5 — ds = (v3 + ws) — Us.

In numerical simulation, we used Runge-Kutta method of order 4 and PECE
(PredictorEvoluteCorrectorEvolute) method [41]. If we take a = 0.075, ¢ = 0.995 and the initial conditions of
the integer-order drive model (2.0.2) and the two FO response models (5.1.1)—(5.1.2) are, respectively,
ug = (2,1, 3,297, vy = (1,2,2)T and wy = (1.1, 1.2, —0.3, 2.2, 6.5)" asan example. The results of CS of our
models are given in figures 10—11. Figure 10 shows the projection (3D) of the solution of the integer-order drive
model (2.0.2) and the two FO response models (5.1.1)—(5.1.2) after synchronization. The synchronization errors
converge zero as depicted in figure 11.

6. Conclusion and future work

Models (2.0.2), (3.0.1) and (4.0.1) with chaotic and hyperchaotic hidden attractors are introduced which have
rich dynamics. These models have only one stable equilibrium. Firstly, we proposed the hyperchaotic complex
integer model (2.0.2). This model has 2, 4, 6, and 10 scrolls hidden attractors for a small change in the parameter
a, as shown in figure 2. According to computed LEs, our model, (2.0.2), exhibits hyperchaotic MSHAs while the
integer version, (1.0.1), does not (see figure 4). Secondly, model (3.0.1) is presented which is the fractional
version of model (1.0.1). The security provided by this model is more complicated than that provided by the
integer one (1.0.1) due to the availability of the fractional parameter q. Furthermore, the basic properties of this
model are investigated using phase diagrams, bifurcation diagrams, and LEs, as shown in figure 4. Finally, the FO
complex model (4.0.1) is given. It is found that this model has one stable equilibrium point and is very sensitive
to its model parameters a (a > 0) and g. We provide our findings for MSHAs of this model in figures 7-9. As
illustrated in figures 1 and figure 6(b), the parameter a interval at which model (4.0.1) contains chaotic MSHAs is
bigger than the one for model (2.0.2). The MSHAs exist only for the complex integer-order model (2.0.2) and the
complex FO model (4.0.1). We introduce the CS between one integer-order drive model and two FO response
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Figure 11. Synchronization errors for the integer-order drive model (2.0.2) and the two FO response models (5.1.1)—(5.1.2).

models with different dimensions as a new kind of synchronization. The tracking control method is used to
present a scheme of this kind of synchronization. As an example of our technique, we present the CS between the
integer-order drive model (2.0.2) and the two FO response models (5.1.1)—(5.1.2). The numerical results of CS of
our models are shown in figures 10-11 and a good agreement is found with the analytical ones. These models
may have applications in physics, image encryption and secure communication.

We are currently working to expand these findings to include time delay for our systems (2.0.2), (3.0.1)
and (4.0.1).
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