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Abstract We analyze two identical qubits interacting with a single-mode quantized
radiation field, taking into account the influence of phase damping. The qubits are
assumed to be initially in a superposition of the excited and the ground states, and the
field is in a coherent state. The effects of the damping on the purity loss of the system
and different bipartite partitions of the system [field-two qubits, qubit–(field + qubit)]
through the tangles are considered. The effect of the damping on the entanglement of
field qubits state is evaluated by the negativity. It is noted that the phenomenon of death
and rebirth of the entanglement appears. With the increase in the phase parameter, this
phenomenon disappears.
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1 Introduction

Quantum entanglement plays a crucial role in quantum information processing [1].
Quantum entangled states have become the key ingredient in the rapidly expanding
field of quantum information science, with remarkable prospective applications such
as quantum teleportation, quantum cryptography, quantum dense coding and parallel
computing [1,2]. However, it has been shown that not all of the quantum entangled
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states are useful in quantum information processing. There exist bound entangled
states from which no pure entangled states can be distilled under local operation and
classical communication (LOCC) [2]. With bound entangled states as the entanglement
resource, teleportation cannot be performed better than with a classical channel, even
if conclusive teleportation is allowed [3]. It has been shown that bound entangled states
can enhance the fidelity of teleportation for non-bound entangled states [4].

A common theme of the examples given above is that measurements are made on
single copies of the quantum system of interest. In many situations, however, one does
not have access to an individually addressable system. In a gas, for example, preparing
and addressing individual qubits is extremely difficult. On the other hand, one may
think of the entire ensemble as a single many-body system. Indeed, recent experiments
[5,6] and theoretical proposals [7] have explored the control of such ensembles from
the point of view of the model [8] where a collection of N two-level atoms is treated as
a pseudo-spin with J = N

2 . Measures of entanglement associated with spin-squeezed
states have been studied in reference [8] under the assumption that all of the atoms in
the ensemble are symmetrically coupled to the bus. However, completely quantifying
entanglement in the most general cases is extremely difficult and as yet, an unsolved
problem [9].

In this article, we consider the simplest possible ensemble consisting of two
two-level qubits, and the simplest realization of the bus is a single-mode quantized
electromagnetic field. The resulting physical system then corresponds to the two-
atom Tavis–Cummings model (TCM) [10]. Thorough understanding of the dynam-
ical evolution of TCM has obvious implications for the performance of quantum
information processing, [1,11,12] as well as for our understanding of fundamen-
tal quantum mechanics [1,13]. Entanglement in tripartite systems has been stud-
ied in [14] for the case of three qubits. That study found that such quantum cor-
relations cannot be arbitrarily distributed among the subsystems; the existence of
three-body correlations that constrains the distribution of the bipartite entanglement
which remains after tracing over any one of the qubits. This phenomenon of entan-
glement sharing was analyzed by using an entanglement monotone known as the
tangle [14–18] that is a simple generalization of the more familiar concurrence. But
the entanglement of two spatially separated qubits has been investigated by using
the negativity with phase damping in [19,20]. Entanglement also compared with
the total correlation that measured by the mutual entropy [19–23]. For two qubits,
this comparison also has been investigated by different measures in [24–26]. But
the entanglement of a qubit interacting with a field recently has been investigated in
[27,28].

In this paper, the effects of the phase damping on the purity loss of the system
and the tangles are considered. In particular, the effect of the phase damping on the
amount of entanglement between qubits and field is evaluated by the negativity. The
remainder of this article is organized as follows: Sect. 2 is devoted to the model and
its solution. In Sect. 3, we employ the analytical results obtained in Sect. 2 to discuss
the tangles and negativity. Finally in Sect. 4, we present our conclusion.
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2 The model and its solution

Here we consider a two-qubit + field system in the dispersive regime with a reservoir.
Two initially interacting identical qubits, labeled by A1 and A2, are chosen as the
model. Each is a two-level atom with an excited state |1〉 and a ground state |0〉. The
standard formalism for the calculations of the time evolution and correlation properties
of a collective system of atoms is the master equation method. Suppose we have two
qubits interacting with a quantized field inside a phase-damped cavity. The master
equation that governs the dynamics of the whole system can be given as:

dρ

dt
= i[ρ, Ĥ ] + ζ1

[
2|0〉11〈1|ρ|1〉11〈0| − |1〉11〈1|ρ − ρ|1〉11〈1|

]

+ ζ2

[
2|0〉22〈1|ρ|1〉22〈0| − |1〉22〈1|ρ − ρ|1〉22〈1|

]
. (1)

Here, the interaction Hamiltonian H of the two-qubit system interacting with the field
in the dispersive regime is given by [29]:

Ĥ =
∑

i=A1,A2

{
|1〉i i 〈1|λââ† − |0〉i i 〈0|λâ†â

}

+ λ

(
|1〉11〈0| ⊗ |0〉22〈1| + |0〉11〈1| ⊗ |1〉22〈0|

)
, (2)

where â† (â) is the creation (annihilation) operator, and λ is the effective interaction
constant. Parameters ζ1 and ζ2 are the phase-damping constants to the environment.

The master equation Eq. 1 can be solved to obtain ρi j (τ ), (i,j = 1, 2, 3, 4) (for sim-
plicity, we will take ζ1 = ζ2 = ζ ) . To do this, we suppose the qubits and field are
initially in the form:

ρ(0) =
∑

m,n=0

qnqm |m〉〈n| ⊗ |ν〉〈ν|, (3)

where qn = e
−|α|2

2 αn√
n! and α is a complex number, and the field is initially in a coherent

state |α〉〈α|. While the qubits are initially in a superposition of the excited and the
ground state as follows: |ν〉 = (sin θ1|1〉1 +cos θ1|0〉1)(sin θ2|1〉2 +cos θ2|0〉2). Then,
we can write the density matrix for the combined qubits–field system ρ(τ) in the
flowing form:

ρ(τ) =

⎛
⎜⎜⎝

ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

⎞
⎟⎟⎠. (4)

We use the bases |1〉 = |1〉1|1〉2, |2〉 = |1〉1|0〉2, |3〉 = |0〉1|1〉2 and |4〉 = |0〉1|0〉2.
Solving Eq. 1 under the initial conditions Eq. 3 gives the elements of ρi j (τ ) in the
following form:

123

Author's personal copy



A.-S. F. Obada et al.

ρ11(τ ) = e−4γ τ (sin θ1 sin θ2)
2

∞∑
m,n=0

qmq∗
n e−2iτ(m−n)|m〉〈n|

ρ12(τ ) = (ρ21(τ ))† = e−3γ τ

2
sin θ1 sin θ2

∞∑
m,n=0

qmq∗
n [sin(θ1 − θ2)e

−2iτ(m+1)

+ sin(θ1 + θ2)e
−2iτm]|m〉〈n|

ρ13(τ ) = (ρ31(τ ))† = e−3γ τ

2
sin θ1 sin θ2

∞∑
m,n=0

qmq∗
n [sin(θ2 − θ1)e

−2iτ(m+1)

+ sin(θ1 + θ2)e
−2iτm]|m〉〈n|

ρ14(τ ) = (ρ41(τ ))† = e−2γ τ

4
sin 2θ1 sin 2θ2

∞∑
m,n=0

qmq∗
n e−2iτ(1+m+n)|m〉〈n|

ρ22(τ ) = 1

2

∞∑
m,n=0

qmq∗
n e−2γ τ [sin(θ1 − θ2) sin(θ1 + θ2) cos 2τ

−2γ (sin θ1 sin θ2)
2

γ + i(m − n)
(e−2iτ(m−n)−2γ τ − 1)

+ sin2 θ1 cos2 θ2 + cos2 θ1 sin2 θ2]|m〉〈n|
ρ23(τ ) = (ρ32(τ ))† = e−2γ τ

2

∞∑
m,n=0

qmq∗
n [i sin(θ1 − θ2) sin(θ1 + θ2) sin 2τ

+ 1

2
sin 2θ1 sin 2θ2]|m〉〈n|

ρ24(τ ) = (ρ42(τ ))† = e−γ τ

2

∞∑
m,n=0

qmq∗
n

{
γ sin θ1 sin θ2 sin(θ1 − θ2)

i(n − m − 1) − γ
(e−2τ(γ+i(m+1))

−e−2inτ ) + cos θ1 cos θ2 sin(θ2 − θ1)e
−2inτ + γ sin θ1 sin θ2 sin(θ1 + θ2)

i(1 + n − m) − γ

×(e−2τ(im−γ ) − e−2iτ(1+n)) + e−2iτn

2
sin(2θ1) cos θ2

}
|m〉〈n|

ρ33(τ ) = 1

2

∞∑
m,n=0

qmq∗
n e−2γ τ [sin(θ2 − θ1) sin(θ1 + θ2) cos 2τ

−2γ (sin θ1 sin θ2)
2

γ + i(m − n)
(e−2iτ(m−n)−2γ τ − 1)

+ sin2 θ1 cos2 θ2 + cos2 θ1 sin2 θ2]|m〉〈n|
ρ34(τ ) = (ρ43(t))

† = e−γ τ

2

∞∑
m,n=0

qmq∗
n

{
γ sin θ1 sin θ2 sin(θ1 − θ2)

i(n − m − 1) − γ
(e−2τ(γ+i(m+1))

−e−2inτ ) + cos θ1 cos θ2 sin(θ2 − θ1)e
−2inτ − γ sin θ1 sin θ2 sin(θ1 + θ2)

i(1 + n − m) − γ
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×(e−2τ(im−γ ) − e−2iτ(1+n)) − e−2iτn

2
sin(2θ1) cos θ2

}
|m〉〈n|

ρ44(τ ) =
∞∑

m,n=0

qmq∗
n

{
γ 2 sin2 θ1 sin2 θ2

(γ + i(m − n))2 [e−2iτ(m−n)−4γ τ + e2iτ(m−n) − 2e−2γ τ ]

− γ (sin2 θ1 cos2 θ2 + cos2 θ1 sin2 θ2)

γ + i(m − n)
[e−2γ τ − e2iτ(m−n)]

+ (cos θ1 cos θ2)
2[e−2γ τ − e−2iτ(m−n)]

}
|m〉〈n|,

with τ = λt and γ = ζ
λ

. The dynamic of purity loss and entanglement for two qubits
interacting with a single-mode field are discussed in the next section using the above
analytic description.

3 Purity loss and entanglement

Quantum information processing often requires a state with high purity and a large
amount of entanglement. In this section, we will explain the basic notions and physical
implication of bipartite tangle. As many experiments nowadays aim at the generation
of multiparticle entangled states. However, the study of bipartite entangled states will
already enable us to introduce the central concepts of entanglement detection.

3.1 Bipartite tangles in the two qubits

Let the two identical qubits in the ensemble be denoted by A1 and A2, respectively,
and the field, or quantum bus, by F . Because of the assumed exchange symmetry,
there are two nonequivalent partitions of the two qubits model into tensor products of
bipartite subsystems: (i) the two qubits ensemble times the field, A1 A2 ⊗ (F); (ii) one
qubit times the remaining qubit and the field, A1 ⊗ (A2 F). We calculate the tangle
of the partition (i), (ii) to discuss the purity for the system under consideration. The
tangle between two qubits in an arbitrary state is defined in terms of the concurrence
[30,31]. An analytic form for the tangle τ of a bipartite system AB is given by [32]:

τA(B) = 2[1 − T r(ρ2
B)] (5)

Field-ensemble and one-atom-remainder tangles Under the assumption that the
system is in an overall pure state, we may easily calculate the tangles in partition (i)
and (ii) above by applying Eq. 5 as:

τA1 A2(F) = 2[1 − T r(ρ2
F )], τA1(A2 F) = 2[1 − T r(ρ2

A2 F )]. (6)

If the density operator ρ of any state can be written as the outer product of a ket and
its associated bra, then the state is said to be pure. The density operator of all pure
states satisfies T rρ2 = 1. Otherwise, it is called a mixed state, T rρ2 < 1. The last
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Fig. 1 τA1 A2(F) when the qubits are initially in a superposition of the excited and the ground state and the

field is in a coherent state with initial mean photon number |α|2 = 4 and θ1 = θ2 = θ : a τF(A1 A2) against
τ and γ with θ = π

4 . bτF(A1 A2) against τ and θ with γ = 0.4

inequality is a signature of a mixed state. There are two sources of purity loss in the
present system. One of them is due to the unitary interaction. This process is usually
called entanglement, and from the point of view of one of the subsystems, a purity
loss (or coherence loss) will take place. On the other hand, the interaction of any
subsystem with the environment also induces purity loss, and this process is usually
called coherence loss induced by the environment. The purity of the state represented
by a density operator ρ is measured by tangles τA1 A2(F) and τA1(A2 F). In the following,
we use the terminologies τA1 A2(F) < 1 for weak tangle and τA1 A2(F) > 1 for strong
tangle.

In Figs. 1 and 3a, the tangles τA1 A2(F) and τA1(A2 F) are plotted against scaled time
and γ for the two qubits with the initial mean photon number |α|2 = 4 and θ = π

4 .
At first, we can note that the initial values of τA1 A2(F), for the initial product states,
are zero. But, from Fig. 1a, b, we can find that the increase in τA1 A2(F) exceeds its
initial value, and it growths to the maximum value. Then after a certain time, the
tangles evolve to zero and the qubits are in a pure state with a period π . So, we can
observe the qubits which are initially separated can generate entanglement (γ = 0).
In absence damping, we find that the unitary qubits–cavity interaction can generate
entanglement as shown in Fig. 1a,b. Also, when τA1 A2(F) is plotted against τ and
θ , this generation (birth) of the entanglement from the initial product states (which
have zero entanglement) is clearly observed in Fig. 1b, where the peak of the tangle
appears, and this means that the large entanglement can be prepared by choosing the
initial phase angle.

We can see that the influence of the phase damping leading to the amplitudes of
the local maxima and minima of the tangles τA1 A2(F) and τA1(A2 F) decreases with
increasing the parameter γ . The tangles quite vanish, and the states (Eq. 4) finally
go into a pure state and the mixedness is completely lost. So, after a short time, the
damping destroys the tangles and we can determine a particular region in which there
is no coherence in the qubits and the field due to the phase damping. We can see that
the phenomenon of the generation of mixedness is a very strong sensitivity for the
phase-damping parameter γ .

To see clearly the influence of the damping on the evolution of the mixedness, the
tangles for different values of the damping parameter (γ = 0, 0.2, 0.5) for 0 ≤ τ ≤ π ,
are plotted in Figs. 2 and 4a. When γ = 0, (i.e., in the absence of the damping), we
can observe that the tangles evolve with a period π . At τ = nπ (n = 0, 1, ...),
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Fig. 2 τA1 A2(F) as a function of τ , when the qubits are initially in a superposition of the excited and the

ground state and the field is in a coherent state with initial mean photon number |α|2 = 4 and θ1 = θ2 = θ :
a θ = π

4 for various values of the damping parameter γ = 0 (dot curve), γ = 0.2 (dashed curve) and
γ = 0.5 (solid curve). b γ = 0.4 where θ = 0.2π (dot curve), θ = 0.3π (dashed curve) and θ = 0.4π

(solid curve)
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Fig. 3 τA1(A2 F) when the qubits are initially in a superposition of the excited and the ground state and the

field in a coherent state with initial mean photon number |α|2 = 4 and θ1 = θ2 = θ : a τA1(A2 F) against τ

and γ with θ = π
4 . b τA1(A2 F) against τ and θ with γ = 0.4

the tangles drop to zero, and this measure has observable periodic behavior. This
periodical dynamic behavior of the tangles depend on the parameter γ . Increasing
the damping parameter not only disturbs the evolution period of the tangles, but also
affects their amplitudes. Physically, all these features can be attributed to the change
in the qubit–field interaction time due to damping parameter (see Figs. 2 and 4a).

In Figs. 2 and 4a, the damping parameter reflects the presence of the reservoir and
shows that it affects the coherence properties. The states of qubits and qubit–fields
lose their mixedness more than gain due to the phase damping (γ = 0.2, 0.5). To
see the asymptotic behavior of τA1 A2(F) and τA1(A2 F), we put (γ → ∞). Therefore,
τA1 A2(F)(γ → ∞) ≈ 0 and , τA1(A2 F)(γ → ∞) ≈ 0 i.e., the asymptotic behavior of
the qubits closely follows the qubit–field which are in pure states.

To see the effect of the distribution angel of the initial qubits states, the tangles
τA1 A2(F) and τA1(A2 F) are plotted against scaled time and θ with |α|2 = 4 and γ = 0.4
in Figs. 1 and 3b. The time evolution of the tangles is very regular, and it is symmetric
about θ = π

2 and is periodic in time with period π . This is due to the periodic
nature of the interaction and the symmetry of the two qubits. We can note that the
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Fig. 4 τA1(A2 F) as a function of τ , when the qubits are initially in a superposition of the excited and the

ground state and the field in a coherent state with initial mean photon number |α|2 = 4 and θ1 = θ2 = θ :
a θ = π

4 for various values of the damping parameter γ = 0 (dot curve), γ = 0.2 (dashed curve) and
γ = 0.5 (solid curve). b γ = 0.4 where θ = 0.2π (dot curve), θ = 0.3π (dashed curve) and θ = 0.4π

(solid curve)

phase damping decreases the amplitude of τA1 A2(F) and τA1(A2 F) and changes in its
oscillations; therefore, the local extreme (maxima or minima) values of τA1 A2(F) and
τA1(A2 F) decrease. These effects become more pronounced at higher values of the
damping parameter, the tangles completely vanish, and the peak centered at θ = π

2
disappears.

The obvious remark from Figs. 1, 2, 3 and 4 is that τA1(A2 F) ≤ τA1 A2(F), i.e., the
tangle for the one qubit-remainder tangle is smaller than that for the field qubit. Also,
this shows that quantum tangle cannot be equally distributed among many different
objects in the system. The physical implication for two definitions of the tangles shows
clearly the effects by the damping parameter γ . Despite differences in the temporal
evolution of the curve in both definitions, the maximum and minimum values of
them occur at the same time. This means that the tangle may be used to measure the
coherence loss of the bipartite partitions.

3.2 Negativity

The entanglement creation by the spontaneous emission is illustrated more clearly if
one assumes that a system of two qubits decays spontaneously from initially unentan-
gled (uncorrelated) states. Several different measures have been proposed to identify
entanglement between two qubits, and we chose the Peres-Horodecki (negativity)
measure for entanglement [33,34]. The negativity criterion is given by the quantity

E = max

(
0,−2

∑
i

μi

)
, (7)

where the sum is taken over the negative eigenvalues μi of the partial transposition of
the density matrix ρA1 A2(τ ) for two qubits. The value E = 1 corresponds to maximum
entanglement between the qubits, while E = 0 describes completely separated qubits.
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