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Abstract
An analytical solution of the master equation that describes two charge supercon-
ducting qubits interacts with a single microwave cavity field mode within dispersive
approximation and dissipation region of the qubit damping. Quantum correlations of
a general two-qubit state (non-X-state) are studied by using three different quantum
correlation quantifiers: measurement-induced non-locality, geometric quantum dis-
cord and logarithmic negativity. It is shown that the quantum correlations are sensitive
to the choice of the parameters of the qubit dissipation rate, coherent state intensity
and the initial qubit distribution angle. The generated oscillatory behavior of quan-
tum correlations is different and more prominent as the noise rate decreases at the
considered period of time.

Keywords Quantum correlations · Measurement-induced non-locality · Geometric
quantum discord · SC qubits

1 Introduction

Quantum information is based on the realization of various forms of quantum corre-
lations (QCs) including entanglement which is observed in composite systems. The
existence of corrected states is essential for quantum information processing [1,2];
it has applications in quantum computing, quantum key distribution and quantum
teleportation. Quantum entanglement (QE) is not the only kind of QCs that play an
important role in quantum information and communication [2], but there are several
measures of quantum correlations that have been presented [3–7]. Among these, quan-
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tum discord (QD) [5,6] measures the QC between two partitions in a composite state.
It is different from QE and may be nonzero even for certain separable states. QD is
used to estimate the QCs in Grover search algorithm [10] and investigate the quantum
phase transition [8,9]. Due to the difficult mathematical manipulation of the quantum
discord, an explicit formula for the geometric quantum discord (GQD) [11] is pre-
sented by using the distance of Hilbert–Schmidt between two states: one of them is
the given state, and the other one is the zero discord.

Another kind of QC is that results via the measurement-induced non-locality (MIN);
it is defined as a dual to the GQD [4]. The MIN and the violation of Bell-type inequal-
ities [2] are different ways to determine the non-locality in quantum states via the
locally invariant measurements. If the non-locality of MIN is compared with the Bell
non-locality (that is detected by violation of Bell-type inequalities), the MIN is a more
general type of QCs based on the necessary disturbance induced by a local measure-
ment. The MIN has many applications in quantum information, quantum cryptography
[4], quantum dense coding [12] and remote state control [13]. The quantum correla-
tions of bipartite quantum state have been studied in lots of previous results [14–16],
while the models which have final X-state, the MIN and GQD have been widely studied
in [17–21].

Research of the superconducting quantum circuits is now a flourishing field in
quantum information processing. Thanks to their solid-state devices, they present an
opportunity for building a quantum computer. The SC circuits have several different
types of qubits: a charge qubit, [22,23], a phase qubit [22] and a flux qubit [22]. These
types are currently the most experimentally advanced solid-state qubits. The charge
qubit may be controlled flexibly through external tunable parameters, so it serves
the quantum computation [24–27]. The strong coupling (dispersive limit) between a
superconducting charge qubit and a coherent field has been experimentally observed
[28–30]. The qubit-field interaction, in dispersive limit [30], is coherent and transfers
the quantum information between the states of a SC qubit and cavity field. Recently,
the strong coupling systems of a single photon in cavity field to a SC qubit have many
potential applications in quantum information processing [31].

In practice, real quantum systems are unavoidably dissipated by their surrounding
environments, where the interaction of a qubit-cavity system naturally involves two
dissipative processes [32]: cavity damping and qubit spontaneous damping. This dissi-
pation effect leads to deteriorate their quantum correlations. Therefore, it is extremely
intriguing and important to investigate the dynamical behaviors of QCs in the dissipa-
tive quantum systems [33,34] and for X states [35–37]. Also, we consider the general
two-qubit non-X-state by choosing the qubits which are initially in the superposition
states to insure the final state of the two qubits has non-X-matrix. Compared with the
previous studies, most prominent superiority of our paper is the computation of QCs
for the density matrix of general two-qubit non-X-state. Consequently, we explore the
difference between the quantum correlations in terms of MIN and GQD and quantum
entanglement via the logarithmic negativity in a general state of two charge supercon-
ducting qubits in the dispersive approximation under a qubit damping.

This paper is structured as follows: In Sect. 2, the physical model and its solution
are presented. In Sect. 3, a brief review of the quantum correlation measures is given.
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Section 4 shows the computational results and discussions. Finally, we conclude our
work in Sect. 5.

2 Driven superconductingmodel and its solution

Here, a real physical model consists of two charge qubits that are strongly coupled with
a single-mode SC cavity. Each Cooper pair box of charge-qubit system contains a small
superconducting island and two Josephson junctions. The circuits of the junctions
contain the same Josephson energy EJ and capacitance CJ [38]. Each Cooper pair
box is coupled to a gate voltage Vg via the gate capacitor Cg with the dimensionless

gate charge ng = CgVg
2e . Here our considerations are: (1) The classical magnetic field

is switched to φc = 1
2φ0 with ng �= 1

2 . (2) The two approximations of rotating wave
and dispersive regime are regarded. In the dispersive regime, the large detuning limit,
there is not energy exchange between the charge-qubit systems and the microwave
cavity field, is considered, i.e., δ = Ez − ω � π |ηi |EJ

φ0

√
n̄ where n̄ is the mean photon

numbers. Therefore, the dispersive Hamiltonian of the qubit-cavity system is given by
[39]

Ĥdisp =
∑

i=A,B

π2|ηi |2 E2
J

δφ2
0

{
σ̂ i+σ̂ i−ψ̂ψ̂† − σ̂ i−σ̂ i+ψ̂†ψ̂ + σ̂ A+ ⊗ σ̂ B− + σ̂ A− ⊗ σ̂ B+

}
, (1)

where ψ̂† and ψ̂ are the creation and annihilation operators of the SC-cavity field.

The λ = π2|ηi |2 E2
J

δφ2
0

is the dispersive coupling constant between the cavity field and the

charge qubits. The parameters ηi have units of magnetic flux and depend on the SC
cavity and the position of Cooper pair boxes. The third term describes the interaction
between the charge qubits with flux quantum φ0 = h/2e. The charge energy Ez

depends on the gate charge ng. The operators σ̂ i± are the usual Pauli matrices with the
space spanned by the charge excited states, |1〉i , and ground states, |0〉i .

If we include the dissipation of SC-qubit spontaneous decay (qubit damping) in
the Cooper pair boxes, the master equation that describes the time evolution of the
qubit-cavity system is given by

dρ̂(t)

dt
= i[ρ̂(t), Ĥdisp]

+
∑

n=A,B

γn

[
2|0〉nn〈1|ρ̂(t)|1〉nn〈0| − |1〉nn〈1|ρ̂(t) − ρ̂(t)|1〉nn〈1|

]
, (2)

Theγn (n = A, B) are the qubit dissipation rates; for simplicity, we takeγA = γB = γ .
To find the solution of the master equation of Eq. 2, we let the initial density matrix
as:

ρ̂(0) =
∑

m,n=0

qmqn|m〉〈n| ⊗ ρ AB(0), (3)
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where qn = e
−|α|2

2 αn√
n! . The SC-cavity field is initially prepared in coherent state |α〉〈α|,

where |α| is the coherent state intensity (mean photon numbers). While the two charge
qubits are initially prepared in the superposition of the ground and excited states, i.e.,
ρ̂ AB(0) = |φ〉〈φ|, where |φ〉 = sin2 θ |1〉 + sin θ cos θ(|2〉 + |3〉) + cos2 θ |4〉.

In the bases {|1〉 = |11〉, |2〉 = |10〉, |3〉 = |01〉, |4〉 = |00〉}, the elements of the
density matrix of the two charge qubits, ˙̂ρi j (i, j = 1, 2, 3, 4), satisfy the following
differential equation system:

˙̂ρ11 = −2iλ
[
ψ̂†ψ̂ρ̂11 − ρ̂11ψ̂

†ψ̂
]

− 4γ ρ̂11,

˙̂ρ12 = −iλ
[
2ψ̂†ψ̂ρ̂12 + ρ̂12 − ρ̂13

]
− 3γ ρ̂12,

˙̂ρ13 = −iλ
[
2ψ̂†ψ̂ρ̂13 + ρ̂13 − ρ̂12

]
− 3γ ρ̂13,

˙̂ρ14 = −2iλ
[
(1 + ψ̂†ψ̂)ρ̂14 + ρ̂14ψ̂

†ψ̂
]

− 2γ ρ̂14,

˙̂ρ22 = −iλ
[
ρ̂32 − ρ̂23

] − 2γ
[
ρ̂22 − ρ̂11

]
,

˙̂ρ23 = −iλ
[
ρ̂33 − ρ̂22

] − 2γ ρ̂23,

˙̂ρ24 = −iλ
[
ρ̂24(1 + 2ψ̂†ψ̂) + ρ̂34

]
− γ

[
ρ̂24 − 2ρ̂13

]
,

˙̂ρ33 = −iλ
[
ρ̂23 − ρ̂32

] + 2γ
[
ρ̂11 − ρ̂33

]
,

˙̂ρ34 = −iλ
[
ρ̂34(1 + 2ψ̂†ψ̂) + ρ̂24

]
+ γ

[
2ρ̂12 − ρ̂34

]
,

˙̂ρ44 = 2iλ
[
ψ̂†ψ̂ρ̂44 − ρ̂44ψ̂

†ψ̂
]

+ 2γ
[
ρ̂11 + ρ̂33

]
, (4)

and the rest elements verify: ˙̂ρi j = ( ˙̂ρ j i )
†.

By using Eq. 3, we can solve the above differential equation system. Therefore, the
time evaluation of the two charge qubits is given by

ρ̂ AB(t) =
4∑

m,n=1

ρmn|m〉〈n|, (5)

where ρmn are the elements of the density matrix of ρ̂ AB(t), which are given by

ρ11 = e−4γ t sin4 θ,

ρ12 = ρ13 = 1

2
e−|α|2(1−e−2iλt )−3γ t sin2 θ sin 2θ,

ρ14 = 1

4
e−2γ t sin2 2θe−2iλt−|α|2(1−e−4iλt ),

ρ22 = e−2γ t [cos2 θ − sin2 θ(e−2γ t − 1)] sin2 θ,

ρ23 = 1

2
e−2γ t sin2 2θ,
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ρ24 = 1

2
e−|α|2(1−e−2iλt )−γ t

[
γ sin2 θ sin 2θ

iλ − γ
(e−2γ t − e−2iλt ) + 1

2
sin 2θ cos θ

]
,

ρ34 = −1

2
e−|α|2(1−e−2iλt )−γ t

[
γ sin2 θ sin 2θ

iλ − γ
(e−2γ t − e−2iλt ) + 1

2
sin 2θ cos θ

]
,

ρ44 = sin4 θ(e−2γ t − 1)2 − 2(e−2γ t − 1) sin2 θ cos2 θ + cos4 θ. (6)

In the following sections, we use the general two-qubit non-X-state, ρ AB(t), to dis-
cuss the effects of the qubit damping on some dynamical properties of the quantum
correlations.

3 Quantum correlationmeasures

Here, we recall the definitions of the QC measures for a general quantum bipartite
state, ρ AB(t), which expresses in terms of its Bloch representation and Pauli spin
matrices σi as:

ρ̂ AB(t) = 1

4

⎡

⎣I4×4 +
∑

i=1

(xiσi ⊗ I2×2 + I2×2 ⊗ yiσi ) +
∑

i j=1

ri jσi ⊗ σ j

⎤

⎦ , (7)

where xi and yi are the components of the local Bloch vectors �x and �y, while ri j =
tr{ρ AB(σi ⊗ σ j )} are the components of the correlation matrix R = [ri j ] [11]. If
ρi j = ui j + ivi j (i, j = 1 − 4) are the elements of ρ AB , then the vector �x is given by

�x = (2u13 + 2u24, 2v31 + 2v42, 2ρ11 + 2ρ22 − 1)t , (8)

and the matrix R is given by

R = 2

⎛

⎝
u23 + u14 v23 − v14 u13 − u24
v41 − v23 u23 − u14 v13 + v24

u12 − u34 v34 − v12 ρ11 + ρ44 − 1
2

⎞

⎠ . (9)

By using the vector �x and the correlation matrix R, the GQD and MIN quantifiers are
defined as the following:

(i) Geometric quantum discord is given by [11]

Gt = 1

4

(
‖�x‖2 + ‖R‖2 − kmax

)
, (10)

where the kmax is the maximum eigenvalue of the matrix K = �x�xT + R RT .
The GQD is used to quantify the quantum correlation via the minimum distance
between the state, ρ AB(t) and a zero discord state.
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(ii) Measurement-induced non-locality is defined by [4]

Mt =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

(
trRRt − 1

‖�x‖ �xt RRt �x
)

, �x �= 0;

1
2 (trRRt − μmin), �x = 0.

, (11)

where μmin corresponds to the minimum eigenvalue of RRt . From a geometric
perspective, the MIN presents another type of QCs via the local von Neumann
measurements from which one of the reduced states is left invariant.

(iii) Logarithmic negativity is defined by [40]

Nt = log2

[
1 + 2

∑

i

|μi |
]

, (12)

where |μi | are the absolute values of the negative eigenvalues of the partially
transposed density matrix of ρ̂ AB(t). The logarithmic negativity is a good measure
for quantum entanglement. It measures the QE of a final state ρ̂ AB(t) if it starts
with pure state or mixed state.

4 Computational results

Figure 1 shows the influence of the distribution angle of the initial qubit states, θ ,
on the three QC quantifiers, where the Mt , Gt and Nt are depicted as functions of
τ = λt and θ ∈ [0, π ], at the fixed value of γ = 0. At θ = 0.2π and τ = 0
(before the interaction is started), we note that the initial values of the QC quantifiers
are Mt=0 = Gt=0 = Nt=0 = 0, i.e., the qubit states are uncorrelated. As soon as the
interaction is started, the measures show that a highly correlated state can be generated,
where the measurement-induced non-locality, the geometric quantum discord and the
logarithmic negativity present different periodical behaviors with periodπ . They return
to their initial values (M0 = G0 = N0 = 0) at τ = nπ (n = 0, 1, 2, ...), to confirm
that we plotted the dynamical behaviors of QC measures when τ ∈ [0, 2π ] in Fig. 1c.
In each period, the Mt grows and reaches its maximum value at τ = (2n − 1)π

2 ,
while the Gt and Nt reach twice to their maximum values in the same period. One can
conclude that the charge qubits have three different types of QCs. Moreover, when
looking at the θ -axis, θ ∈ [0, π ], we find that the extreme values of Mt and Nt have
periodic behavior (with respect to θ ) with period θ = π

2 . This means that quantum
correlations preserve their periodicity with the initial qubit distribution angle. The
maximal values of Mt , Gt and Nt (where the two qubits have a maximum correlated
state) for their peaks regularly appear at different values of τ and θ . It is clear that at
the middle of each period τ = (n + 0.5)π, (n = 0, 1, 2, . . .), the MIN and GQD have
minimum value Mmin

t and maximal value Gmax
t at the same time, this emphasizes the

fact that the MIN is a dual to the GQD. Therefore, we can deduce that the generated
quantum correlations can be controlled by the initial qubit distribution angle.
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Fig. 1 Correlation measures, Mt in (a), Gt in (b) and Nt in (c) against interval used qubit distribution angle
θ ∈ [0, π ] and interval scaled time. d The Mt (solid curve), Gt (dashed curve) and Nt (dotted curve) are
depicted for θ = 0.2π . At fixed values of α = 1 and γ = 0

In Fig. 2, we investigate the effect of the qubit dissipation rate γ /λ, where we set
γ ∈ [0, 0.2λ] with the fixed values of |α| = 1 and θ = 0.2π . At γ = 0.1λ (see
Fig. 2d), the Mt , Gt and Nt have the damped oscillatory behavior. After a long time,
the states of the two SC qubits become separable (uncorrelated). In Fig. 2a–c, the
qubit dissipation rate leads to decreasing the upper bounds of the quantum correlation
measures. During the chosen interval of the qubit dissipation rate γ ∈ [0, 0.2λ], the
periodicity of the QCs is lost and their fluctuation develops as time decreases. These
notable changes become more pronounced at large value of the γ /λ, where Mt , Gt

and Nt completely may be vanished. This means that, for a certain value for the qubit
dissipation rate, the generated quantum correlations of the two qubits disappeared
(which are generated due to the interaction between the qubits and microwave cavity
field). Finally, we find a competition between the interaction with and without the
qubit damping parameter γ /λ, while the amplitudes of the QC quantifiers without the
rate γ /λ are larger than those with it. The phenomena of the sudden death (correlated
states drop abruptly to uncorrelated at a finite time [41,42]) and the sudden birth (i.e.,
the uncorrelated states grow suddenly at some finite time to be uncorrelated states
[43]) appear clearly only for the logarithmic negativity.

In Fig. 3, the dependence of the QC measures, Mt , Gt and Nt on the initial coherent
intensity, α, is displayed, where the Mt , Gt and Nt are depicted as Fig. 1 but with the
large value of the initial coherent intensity α = 4. By comparing the effects of the qubit
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Fig. 2 Correlation measures, Mt in (a), Gt in (b) and Nt in (c) against interval used the qubit dissipation
rate γ ∈ [0, 0.2λ]. Figure 2d is as Fig. 1d but for γ = 0.1, at fixed value of α = 1
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Fig. 3 As Fig. 1, but for α = 4
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distribution angle and the initial coherent intensity (see Figs. 1, 3) on the dynamical
behavior of the quantum correlations, we find notable changes. We can deduce that the
Mt , Gt and Nt are very sensitive not only to the qubit distribution angle as mentioned
before but also to the initial coherent intensity. From Figs. 1 and 3, we observe that Mt ,
Gt are more robust than Nt , where the Mt and Gt may be strengthened by increasing
the initial coherent intensity, whereas the logarithmic negativity weakens. The increase
in the initial coherent intensity leads to increasing and sharping the peaks of the Mt and
Gt . Moreover, its maximum and minimum values are more maintenance. In Fig. 3c,
we can see some revival of small peaks for the logarithmic negativity, which appear
as a series and disappears as the initial coherent intensity increases. From Fig. 3d, we
observe that the Mt and Gt have nonzero values and reach their maximum values in
the same time intervals of the death entanglement intervals. But when the logarithmic
negativity reaches its maximum values, Mt and Gt return to their initial zero values.
Therefore, we may deduce that the measurement-induced non-locality, the geometric
quantum discord and the logarithmic negativity present different quantum correlations
in the considered system, and the QE is not only a type of quantum correlations but
there are separable states which may have other types for the quantum correlations as
MIN and GQD.

In Fig. 4, the combined effects of the qubit dissipation rate γ /λ and the initial coher-
ent intensity, α, on the QCs of ρ̂ AB(t) are displayed. We observe that the amplitudes
of the QC functions decrease under the influence of the qubit dissipation rate γ /λ. The
threshold time for the death of the measures depends on the initial coherent intensity
and the qubit dissipation rate. A remarkable property of the initial coherent intensity
α with the qubit damping consists in the fact that the QCs can fall to zero value and
remains nearly invariant regardless of the increase in the λt , i.e., the state of the two
charge qubits, ρ AB(t), becomes separable.
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Fig. 4 Time evolutions of Mt (solid curve), Gt (dashed curve) and Nt (dashed dotted curve) for α = 2 in
(a) and α = 4 in (b) at fixed values for θ = 0.2π and γ = 0.1λ
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5 Conclusion

An analytical solution for a system consists of two-charge-qubit system in a SC cavity
with full wavelength which is introduced in the dispersive regime. The QCs via the
measurement-induced non-locality and geometric quantum discord are compared with
QE via the logarithmic negativity under the influence of the qubit damping. The SC
cavity is initially prepared in coherent states, and the two SC qubits are initially pre-
pared in superposition states. When the effect of the qubit dissipation rate is neglected,
one can find that Mt , Gt and Nt do not have the same behavior, i.e., both the Mt and
Gt present a new quantum correlations unlike that is presented by Nt . It is found that
the generation of correlations depends not only on the initial states but also on the
dissipation of the qubit decay, where the qubit dissipation rate destroys the generated
quantum correlations. By increasing the initial coherent intensity and the qubit decay,
the QCs can fall to zero value for a very long time and will not be recovered, i.e., the
state of the two SC qubits becomes separable. The QE is not only a kind of quantum
correlations in two-charge-qubit system, but it is found that some separable two charge
qubits, Nt = 0, may possess other quantum correlations via MIN and GQD.
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