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Abstract
We investigate the quantum entanglement in a system of two moving atoms interacting with a
single mode field. An analytical solution for this system is obtained when both atoms are
initially in the excited state and the field is in a coherent state. We study the effects of atomic
motion and other parameters on the entanglement of the system and different bipartite
partitions of the system (field–two atoms, atom–(field+atom)) through the tangles. The effect
of atomic motion on the amount of entanglement between atoms and the field is also evaluated
through the negativity. The results show that atomic motion leads to the periodic death and
anabiosis of the entanglement between two moving atoms, and the time of the death and the
amplitude of the anabiosis of the entanglement between two moving atoms depend on the
coupling constant of two moving atoms and the parameter of the mode field.

PACS numbers: 42.50.−p, 03.65.Ud, 03.67.Mn

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Entanglement is the striking feature of quantum mechanics
revealing the existence of non-local correlation among
different parts of a quantum system. A pair of quantum
systems is called entangled if the measurement on one of
them cannot be performed independent of that of the other.
Quantum entanglement (QE) is one of the most profound
features of quantum mechanics. It is a key problem in
the Einstein–Podolsky–Rosen (EPR) paradox [1], quantum
cryptography [2], quantum teleportation [3], quantum
computation [4] and so on, and has been viewed as an
elementary resource for quantum information processing.
These new aspects have launched intensive experimental
efforts to generate entangled states and theoretical efforts to
understand their structures. For instance, the entanglement
between two atoms in an arbitrary pure state has been
quantified by concurrence [5] or negativity [6]; however
that of mixed states has been given as the infimum of the
average concurrence over all possible pure state ensemble
decompositions. Furthermore, the concurrence has been

generalized to include a bipartite system AB, with arbitrary
dimensions DA and DB in an overall pure state [7]. In
this case, the concurrence or negativity is simply related to
the purity of the marginal density operators. The interaction
between the radiation field and the 2-level atom, namely,
the Jaynes–Cummings (JC) model, is an important model in
quantum optics since it is exactly solvable in the framework of
the rotating wave approximation (RWA) and is experimentally
implemented [8, 9]. Moreover, the JC model is a rich
source for non-classical effects, e.g. the occurrence of the
revival collapse phenomenon (RCP) in the evolution of atomic
inversion [10] and the generation of cat states at one-half
of the revival time [11, 12]. Interest in investigating the JC
model has increased as a result of its application in quantum
information [13].

The JC model has been generalized and extended in
different directions [14]. One of these directions is two 2-level
atoms interacting with a single quantized electromagnetic
field (TJCM) [15, 16]. In open systems, entanglement can
vanish completely in a finite time for certain initial states.
This phenomenon is usually called entanglement sudden
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death (ESD) [17, 18]. While under the same condition,
after the entanglement dies, it can revive completely in a
finite time; we call this phenomenon entanglement sudden
anabiosis (ESA). ESD is an intriguing and potentially
very important discovery. Since the first theory of ESD
has been demonstrated, further investigations of various
systems have been made by different groups [18–27]. By
using other entanglement measures [28, 29], ESD has been
observed for more complicated systems, and an attempt has
also been made to give a geometric interpretation for the
phenomenon of ESD [30]. Recently, experimental research
has also been carried out to demonstrate ESD by using
engineered interactions between systems and environments
[31, 32].

The quantized motion of atoms in electromagnetic
fields is a subject of much current interest, in particular
in the context of atom optics [33], quantum state
preparation and detection [34, 35], and possible schemes
for quantum computers [36]. Furthermore, the motion of
two atoms trapped at distant positions in the field of a
driven standing-wave high-Q optical resonator has been
studied [37].

In this paper, we study the effects of the atomic motion
and the parameter of the mode field on the entanglement
of the system and different bipartite partitions of the system
(field–two atoms, atom–(field+atom)) through the tangles. In
particular, the effect of atomic motion on the amount of
entanglement between atoms and the field is evaluated by the
negativity. The results show that this system may present not
only the periodic sudden death of the entanglement but also
the periodic anabiosis of the entanglement, and the periodic
sudden death and anabiosis of the entanglement are relative to
the coupling constant of moving atoms and the parameter of
the mode field. The paper is arranged as follows: section 2 is
devoted to the physical system and its dynamics. In section 3,
we employ the analytical results obtained in section 2 to
discuss the tangles and negativity. Finally, in section 4, we
present our conclusion.

2. The model and its solution

We consider two moving 2-level atoms interacting with a
single mode field in the cavity. The effective Hamiltonian in
the RWA [38] is (h̄ = 1)

Ĥ = wâ†â + w0

2∑
i=1

Si
3 +

2∑
i=1

gi f (zi )(â
k Si

+ + â†k
Si

−
), (1)

where Si
3 and Si

±
are the pseudo-spin operators of the i th

atom; â† (â) is the photon creation (annihilation) operator of
the mode of the field, and k is the photon multiplicity and
is taken equal to 2 afterwards; w0 and w are the frequencies
of the atomic transition and the mode, respectively; gi is the
atoms–field coupling constant. f (zi ) is the shape function of
atomic motion along the z-axis so that only the z-dependence
of the mode field function would need to be taken into
account. Atomic motion can be incorporated in the usual
way [39]:

f (zi ) → f (vi t), (2)

where vi denotes the i th atomic velocity. In order to be
specific, we will define the TEMmnp modes:

f (zi ) = cos

(
πpvi t

L

)
, (3)

where p represents the number of half-wave lengths of the
field mode inside a cavity of length L . For simplicity, we
consider that the two moving atoms have the same velocity so
that f (z1) = f (z2) under the resonant case (w0 = w). Here,
we assume that two moving 2-level atoms enter the cavity at
time t = 0 in the state

|9(0)〉A = |+, +〉, (4)

and the mode is in the coherent state

|9(0)〉F =

∞∑
n=0

qn|n〉, (5)

where qn = e−|α2
|/2 αn

√
n!

, α = |α| eiϕ , n̄ = |α|
2 is the mean

photon number of the coherent field and ϕ is the phase angle
of the coherent field (here we take ϕ = 0). The initial state of
the system is

|9(0)〉 = |9(0)〉F ⊗ |9(0)〉A =

∑
n=0

qn|+, +, n〉. (6)

Under this initial condition, the solution of the Schrödinger
equation in the interaction picture, i.e. the wave function of
the system at any time t > 0, is given by

|9(t)〉 =

∞∑
n=0

qn[c1(n, t)|+, +, n〉 + c2(n, t)|+, −, n + k〉

+ c3(n, t)|−, +, n + k〉 + c4(n, t)|−, −, n + 2k〉].

(7)

Then we obtain the explicit forms for the dynamical
coefficients c j (n, t) ( j = 1, 2, 3, 4) as

c1(n, t) =
1

ζ 2 − η2
[(ζ 2

− β2
1 − β2

2 ) cos(θζ )

+ (β2
1 + β2

2 − η2) cos(θη)],

c2(n, t) =
i[β2(β1γ1 − β2γ2) + γ2η

2] sin(ηθ)

η(ζ 2 − η2)

−
i[β2(β1γ1 − β2γ2) + γ2ζ

2] sin(ζ θ)

ζ(ζ 2 − η2)
,

c3(n, t) =
i[β1(β2γ2 − β1γ1) + γ1η

2] sin(ηθ)

η(ζ 2 − η2)

−
i[β1(β2γ2 − β1γ1) + γ1ζ

2] sin(ζ θ)

ζ(ζ 2 − η2)
,

c4(n, t) =
γ2β1 + γ1β2

ζ 2 − η2
[cos(ζ θ) − cos(ηθ)], (8)

where

β1 = g1

√
(n + 2k)!

(n + k)!
, β2 = g2

√
(n + 2k)!

(n + k)!
,

γ1 = g1

√
(n + k)!

(n)!
, γ2 = g2

√
(n + k)!

(n)!
,

(9)

2



Phys. Scr. 81 (2010) 055303 A-S F Obada et al

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t/π

N
eg

at
iv

ity

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t/π

N
eg

at
iv

it
y

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t/π

N
eg

at
iv

it
y

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t/π

N
eg

at
iv

it
y

(d)

Figure 1. Time evolution of the negativity ℵ for the moving atom–atom entanglement for the two identical atoms prepared initially in the
excited state and the field in a coherent state for the two-photon (k = 2) process with initial mean photon numbers |α|

2
= 25 and

g1 = g2 = 0.5(g1 + g2) for different mode field parameter p: (a) p = 0, (b) p = 1, (c) p = 2 and (d) p = 3.

ζ 2
=

1
2 [β2

1 + β2
2 + γ 2

2 + γ 2
1

−

√
(β2

1 + β2
2 + γ 2

2 + γ 2
1 )2 − 4(γ2β2 − β1γ1)2],

η2
=

1
2 [β2

1 + β2
2 + γ 2

2 + γ 2
1

+
√

(β2
1 + β2

2 + γ 2
2 + γ 2

1 )2 − 4(γ2β2 − β1γ1)2], (10)

with

θ(t) =

∫ t

0
f (vt ′)dt ′

=
L

πpv
sin

(
πpvt

L

)
. (11)

For a particular choice of atomic motion velocity, we take
v = L/π , and θ(t) becomes

θ(t) =
1

p
sin(pt). (12)

Information about the bipartite (i.e. atoms and field)
is involved in the wave function (equation (7)) or in
the total density matrix ρ̂(t) = |9(t)〉〈9(t)|. Nevertheless,
information on the atomic system solely can be obtained from
the atomic reduced density matrix ρ̂(t) having the form

ρ̂A(t) = TrF [ρ̂(t)], (13)

and we can write ρ̂A(t) in the following form:

ρ̂A(t) =


ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

 , (14)

where

ρ11 =

∞∑
n

q(n)q∗(n)c1(n, t)c∗

1(n, t),

ρ22(33) =

∞∑
n

q(n − k)q∗(n − k)c2(3)(n − k, t)c∗

2(3)(n − k, t),

ρ44 =

∞∑
n

q(n − 2k)q∗(n − 2k)c4(n − 2k, t)c∗

4(n − 2k, t),

ρ12(13) =

∞∑
n

q(n)q∗(n − k)c1(n, t)c∗

2(3)(n − k, t) = ρ∗

21(31),

ρ14 =

∞∑
n

q(n)q∗(n − 2k)c1(n, t)c∗

4(n − 2k, t) = ρ∗

41,

3
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Figure 2. Time evolution of the negativity ℵ for the moving atom–atom entanglement for the two atoms prepared initially in the excited
state and the field in a coherent state for the two-photon (k = 2) process with initial mean photon numbers |α|

2
= 25 and g1 = 0.7(g1 + g2)

and g2 = 0.3(g1 + g2) for different mode field parameter p: (a) p = 0, (b) p = 1, (c) p = 2 and (d) p = 3.

ρ23 =

∞∑
n

q(n − k)q∗(n − k)c2(n − k, t)c∗

3(n − k, t) = ρ∗

32,

ρ24(34) =

∞∑
n

q(n − k)q∗(n − 2k)c2(3)(n − k, t)c∗

4(n − 2k, t)

= ρ∗

42(43). (15)

3. Measurement of entanglement degree

3.1. Negativity

In subsequent sections, our goal is to quantify the
entanglement of the final state (equation (14)). For pure
states, the Bell states represent maximally entangled states,
but for mixed states represented by a density matrix there are
some difficulties with ordering the states according to various
entanglement measures; different entanglement measures can
give different orderings of pairs of mixed states and there is
a problem of the definition of the maximally entangled mixed
state [40, 41]. To assess the amount of entanglement created
in a two-atom system, one can use either of two entanglement

measures: concurrence or negativity. We use here negativity,
which is based on the Peres–Horodecki [42, 43] criterion for
entanglement and is defined by the formula

ℵ = max

(
0, −2

∑
i

µi

)
, (16)

where the sum is taken over the negative eigenvalues µi of the
partial transposition of the density matrix ρ of the system. The
value ℵ = 1 corresponds to maximum entanglement between
the atoms, whereas ℵ = 0 describes completely separated
atoms. We present numerical results of the negativity ℵ given
by equation (16) for two moving atoms when both atoms
are initially in the excited state and the field is in a coherent
state for the two-photon (k = 2) process with the initial mean
photon numbers |α|

2
= 25 for different parameters of two

moving atoms as shown in figures 1 and 2 plotted against
(g1 + g2)t/π . Figure 1 shows the influence of the mode
field parameter p for the two identical 2-level atoms, i.e.
the coupling constant g1 = g2, while figure 2 illustrates the
effects of the mode field parameter p on the negativity ℵ

when the atoms can have different coupling constants g1 6= g2.
In figure 1(a), we have plotted the negativity ℵ for p = 0,
i.e. in the absence of atomic motion, corresponding to the

4
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Figure 3. Time evolution of the tangle τA1(A2 F) for the moving atom–atom entanglement for the two identical atoms prepared initially in the
excited state and the field in a coherent state for the two-photon (k = 2) process with initial mean photon numbers |α|

2
= 25 and

g1 = g2 = 0.5(g1 + g2) for different mode field parameter p: (a) p = 0, (b) p = 1, (c) p = 2 and (d) p = 3.

evolution of the negativity ℵ in the standard two photon
process. It is observed that the negativity ℵ evolves with a
period 2π , when (g1 + g2)t = 2nπ (n = 0, 1, 2, . . .), ℵ evolves
to zero and the field is completely disentangled from the
atom, while for (g1 + g2)t = (2n − 1)π

4 , SA(t) evolves to the
maximum value and the field is entangled with the atoms.
In figure 1(b), the motion of two identical 2-level atoms
is taken into account, and it is evident that the negativity
ℵ of two moving atoms evolves periodically with period π .
In the time evolution process, we can see that the death
and anabiosis of the entanglement between two moving
atoms become periodic. This periodical dynamic behavior
of the negativity ℵ depends on the mode field parameter
p and can be understood by equation (12). From equation
(12), we have θ(t) =

1
p sin(pt). It is observed that θ(t) is a

periodical function on the scaled time t with period 2π/p.
This periodicity of θ(t) of the scaled time t just leads to the
periodicity of evolution of the negativity ℵ. When p = 2 and
3, the entanglement of the atom–atom evolves in period π/2
and π/3, respectively. The influence of parameter p of the
mode field on the entanglement between two moving atoms
is shown in figures 1(c) and (d) when two moving atoms
are initially in their excited states; we show two cases p = 2

and p = 3, respectively. It is explicit that the period shortens
and the amplitude decreases for negativity ℵ as p increases,
and the death and anabiosis of the entanglement between two
moving atoms become periodic. In figures 2(a), the different
coupling constants decrease the amplitude for the negativity
ℵ. In figures 2(b)–(d), the time of death and the time of
anabiosis of the entanglement between two moving atoms rely
on the coupling constant of two moving atoms. The atomic
motion adds regularity to the negativity ℵ. With an increase in
the parameter p, the negativity ℵ increases for p = 3.

3.2. Bipartite tangles for the two atoms

Entanglement is at the heart of quantum information theory,
since it can provide phenomena very different from those
of classical correlation [44]. Various efforts are made to
characterize qualitatively and quantitatively the entanglement
properties of quantum systems. This is motivated by the
progress in the experimental techniques in creating entangled
states [44]. In this section, we investigate the entanglement
property for the system under consideration using the tangle
τ defined in [45]. Based on the symmetry in the system, we
investigate two types of tangle, which are field–atoms and one

5
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Figure 4. Time evolution of the tangle τA1(A2 F) for the moving atom–atom entanglement for the two atoms prepared initially in the excited
state and the field in a coherent state for the two-photon (k = 2) process with initial mean photon numbers |α|

2
= 25 and g1 = 0.7(g1 + g2)

and g2 = 0.3(g1 + g2) for different mode field parameter p: (a) p = 0, (b) p = 1, (c) p = 2 and (d) p = 3.

atom–remainder. Precisely, assume that F , A1 and A2 denote
the field, first atom and second atom, respectively. Therefore,
the field–atoms tangle (F–A1 A2) and one atom–remainder
tangle (A1–F A2) are defined as [46]

τF(A1 A2) = 2[1 − Tr(ρ2
F )] (17)

and
τA1(A2 F) = 2[1 − Tr(ρ2

A2 F )], (18)

where ρF is the reduced density matrix of the field, which
can be obtained by tracing the density matrix of the system
over the set of atoms A1 A2. The forms, equations (17)
and (18), quantify the degree of entanglement to which the
ensembles behave as a collective entity. As mentioned in
the introduction, when the system is in an overall pure state
the tangle involves the notion of the purity. Generally, when
τF(A1 A2) = 0, say, the parties F and A1 A2 are completely
disentangled, but, of course, they could be in states different
from those of the initial ones. Nevertheless, when τF(A1 A2) = 2
the parties are maximally entangled. In the following, we use
the terminologies τF(A1 A2) 6 1 for weak entangled parties and
τF(A1 A2) > 1 for strong entangled parties.

• One atom–remainder tangle.

We study the evolution of the tangle τA1(A2 F) for the
system under consideration, which can be easily evaluated
as [47]

τA1(A2 F) = 2 − 2
∞∑

n,n′

{|q(n)q∗(n′)|2[|c1(n, t)|2

+ |c3(n, t)|2][|c∗

1(n
′, t)|2 + |c∗

3(n
′, t)|2]

+ |q(n)q∗(n′)|2[|c2(n, t)|2

+ |c4(n, t)|2][|c∗

2(n
′, t)|2 + |c∗

4(n
′, t)|2]

+ 2q(n + k)q(n)q∗(n′ + k)q∗(n′)

× [c1(n + k, t)c∗

2(n, t)

+ c3(n + k, t)c4(n, t)][c1(n
′ + k, t)c∗

2(n
′, t)

+ c∗

3(n
′ + k, t)c∗

4(n
′, t)]}. (19)

We have plotted the tangle τA1(A2 F), i.e. (equation (19)), for
two moving atoms when both atoms are initially in the excited
state and the field is in a coherent state for the two-photon
(k = 2) process with the initial mean photon number |α|

2
= 25

for different parameters of the two moving atoms, as shown
in figures 3 and 4. Figure 3 shows the influence of the mode
field parameter p when the atoms can have identical coupling
constants g1 = g2 = 0.5(g1 + g2), while figure 4 illustrates the

6
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Figure 5. Time evolution of the tangle τF(A1 A2) for the moving atom–atom entanglement for the two identical atoms prepared initially in the
excited state and the field in a coherent state for the two-photon (k = 2) process with initial mean photon numbers |α|

2
= 25 and

g1 = g2 = 0.5(g1 + g2) for different mode field parameter p: (a) p = 0, (b) p = 1, (c) p = 2 and (d) p = 3.

effects of the mode field parameter p on the tangle τA1(A2 F)

when the two atoms have different coupling constants g1 6= g2.
As seen from these figures, we can conclude that atomic

motion leads to periodic evolution of the tangle τA1(A2 F) and
entanglement. This periodical dynamic behavior of the tangle
τA1(A2 F) depends on the mode field parameter p and the
increase in the parameter p results in not only a shortening
of the evolution period of the tangle τA1(A2 F) but also affects
the amplitude of the tangle τA1(A2 F). Physically, all these
features can be attributed to the change in the atom–field
interaction time due to atomic motion (see figure 3). To show
the influence of coupling constants g1 and g2, we see that
when g1 = g2 the tangle τA1(A2 F) has the same amplitude
along the t-axis. But when g1 6= g2, the amplitude decreases
for the tangle τA1(A2 F) as p increases (see figure 4).

• Field–atoms tangle.

We study the evolution of the tangle τF(A1 A2) for the system
under consideration, which can be easily evaluated as

τF(A1 A2) = 2 − 2[ρ2
11 + ρ2

22 + ρ2
33 + ρ2

44 + 2ρ12ρ21 + 2ρ13ρ31

+ 2ρ14ρ41 + 2ρ23ρ32 + 2ρ24ρ42 + 2ρ14ρ41. (20)

Under the influence of atomic motion, we have plotted
τF(A1 A2) in figures 5 and 6 for given values of the interaction
parameters. The obvious remark from figures 3 and 4 is that
06 τA1(A2 F) 6 1. This behavior is completely different from
that of τF(A1 A2). This means that the degree of entanglement
for the one atom–remainder tangle is smaller than that of
the field–atoms tangle. Also, this shows that QE cannot
be equally distributed among many different objects in the
system. This can be explained as follows. Entanglement is
a direct consequence of the energy flow between different
components and parties of the system. As we have an isolated
TJCM, i.e. the interaction with the environment is neglected,
the energy is periodically interchanged between the field and
the two-atom system. More illustratively, when the k photons
are annihilated from the field, they are created, i.e. equally
distributed, in the two-atom party and vice versa. This means
that the energy involved in the F A2 party is more than that
in the A1 party. In this regard, the rate of flow of energy
between the parties F and A1 A2 is greater than that between
A1 and F A2, and this is the origin of the difference between
the evolution of τF(A1 A2) and τA1(A2 F) [47].
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Figure 6. Time evolution of the tangle τF(A1 A2) for the moving atom–atom entanglement for the two atoms prepared initially in the excited
state and the field in a coherent state for the two-photon (k = 2) process with initial mean photon numbers |α|

2
= 25 and g1 = 0.7(g1 + g2)

and g2 = 0.3(g1 + g2) for different mode field parameter p: (a) p = 0, (b) p = 1, (c) p = 2 and (d) p = 3.

4. Conclusions

In this paper, we have studied the QE for two moving
atoms interacting with a multi-photon single mode field.
We have investigated the influence of atomic motion on
the behavior of tangles and negativity. Atomic motion taken
as a trigonometric function leads to the periodic evolution
of entanglement between two moving atoms. The period
depends on the parameter p. The time of the death and
the amplitude of the anabiosis of the entanglement between
two moving atoms depend on the coupling constant. The
death of the entanglement still exists with the change of the
parameter p. We can conclude that atomic motion leads to
the periodic evolution of tangle and negativity. This periodical
dynamic behavior of the tangle depends on the mode field
parameter p, and an increase in the parameter p results is
not only a shortening of the evolution period of the tangle but
also affects the amplitude of the tangle. Under the influence
of atomic motion, the degree of entanglement for the one
atom–remainder tangle is smaller than that of the field–atoms
tangle. Also, this shows that the QE cannot be equally
distributed among many different objects in the system.
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