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Abstract

An analytical solution for two identical 2-level atoms interacting with a single-mode quantized
radiation field in the presence of the Stark shift is obtained. Both atoms are prepared initially
in the excited state and the field in a coherent state. The phase distribution, phase variance and
Wigner function are investigated. The influence of the Stark shift on the Wigner function and
the phase properties is analysed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum information processing has recently attracted much
attention in quantum physics and information science [1, 2].
It provides novel information such as quantum computing
[3], teleportation [4], cryptography [5], dense coding [6]
and entanglement swapping [7]. The system containing
two 2-level atoms in an electromagnetic field [8–15] is
one of particular interest, since it can represent two qubits,
the building blocks of the quantum gates that are essential
to implement quantum protocols in quantum information
processing.

As a typical model, the Tavis–Cummings model (TCM)
[16] provides the simplest example of a collection of 2-level
atoms interacting with a common quantized electromagnetic
field. A thorough understanding of the dynamical evolution
of the TCM has obvious implications for the performance
of quantum information processing [1, 17, 18], as well as
for our understanding of fundamental quantum mechanics
[1, 19]. Two-atom states can be characterized by several
parameters such as purity (or mixedness), phase probability,
phase variance and the Wigner function.

The quasiprobability distribution defined by Wigner has
been one of the main tools to provide insights into the
connections between classical and quantum mechanics [20].
Particularly, the negative values of the Wigner (W ) function

in a two-dimensional phase space of a single-mode light
field are seen as a hallmark of the nonclassicality of the
dynamical systems. Recently, several schemes for direct
measurement of values of the W function have been proposed
[21] and performed experimentally [22]. Another important
issue related to this negative-valued part is the disappearance
of the interference pattern in the mesoscopic quantum
superpositions of coherent states [23, 24] (Schrödinger cat
states) due to the phenomenon of decoherence [25]. The
Wigner representation [20] is a useful tool to express the
quantum mechanics in a phase-space formalism. It contains
complete information about the state of the system, i.e.,
it carries the same information as the density operator or
the corresponding wavefunction. However, the authors in
[26, 27] have shown that the radially integrated Wigner
function can be negative and so the polar angle cannot be
interpreted as corresponding to a phase angle observable [26].

A phase formalism based on the existence of states with
a well-defined phase has been introduced [28–30]. This
formalism accommodates a Hermitian phase operator and
thus allows one to treat phase properties of the field in
fully quantum-mechanical fashion without recourse to semi-
classical or phenomenological methods. Quantities such as
the phase distribution function and phase variance are now
available for investigation. Using this phase formalism, the
authors in [31, 32] examined the evolution of the phase of a
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coherent field interacting with a 2-level atom in an ideal cavity.
They found that the time behaviour of the phase probability
distribution and the variance of the phase reflect the collapses
and revivals of the atomic inversion [33–35] in an interesting
way. Also the effects of cooperative atomic interaction, cavity
losses and pump fluctuations on quantum phase properties of
the field have been studied [36] for different initial states. It
is found that the quantum phase properties of the field are
highly sensitive to two-atom events and cavity losses and
the fluctuation associated with the random injection of the
atoms. The phase properties of a field mode interacting with
two 2-level atoms with multi-photon transitions were studied
[10, 37]. It is found that for symmetric (asymmetric)
interaction, the system can generate asymmetric (symmetric)
cat states [37]. All the previous studies ignored the Stark shift
but when the two atomic levels are coupled with comparable
strength to the intermediate relay level, the Stark shift becomes
significant and cannot be ignored [38–41].

In the present paper, we study the evolution of two
identical 2-level atoms interacting with a single-mode
quantized radiation field, taking into account the level shifts
produced by the Stark shift. We assume that both the atoms are
initially prepared in the excited state and the field in a coherent
state. We investigate the phase distribution, phase variance and
Wigner function. The paper is arranged as follows: section 2 is
devoted to the physical system and its dynamics. In section 3,
we employ the analytical results obtained in section 2. Finally,
in section 4, we present our conclusion.

2. The model and its solution

We consider the interaction of two identical 2-level atoms
with a resonant single-mode quantized electromagnetic field.
In this system, either atom can transit from the excited state
|+〉 to the ground state |−〉 under the driving of a resonant field
and emit a photon. Also, either atom that is in state |−〉 can
absorb such a photon and jump to state |+〉. The authors in
[10] discuss a similar model without the Stark shift and in the
case of one photon, but our interest lies in the case where the
Stark shift and multi-photon are included. The Hamiltonian
of the system takes the form

Ĥ = ω

(
â†â +

1

2

)
+ ω

(
σ̂ 3

1 + σ̂ 3
2

)
+ g

2∑
i=1

(
âl σ̂ +

i + â†l

σ̂−
i

)
+ â†âβ1

(
σ̂−

1 σ̂ +
1 + σ̂−

2 σ̂ +
2

)
+ â†âβ2

(
σ̂ +

1 σ̂−
1 + σ̂ +

2 σ̂−
2

)
,

(h̄ = 1), (1)

where â, â† are annihilation and creation operators of the
cavity field and the 2-level atoms are described by the
atomic pseudospin operators σ̂ 3

i , σ̂±
i , and l is the photon

multiplicity, and it is taken to be equal to 2 hereafter. In
addition, β1 and β2 are the Stark shift parameters related to
the ground–intermediate and intermediate–excited states of the
two identical atoms and are defined as

β1 = g2
1

� , β2 = g2
2

� , g = g1g2

� ,

where g1(2) is the coupling strength of the ground–intermediate
(intermediate–excited) transition. For simplicity, we consider

the case in which the atoms and the field are exactly resonant,
i.e., �1 = −�2 = �, where �1 = ω − (ωi − ωg) and �2 =
(ωe − ωi) − ω.

The initial state of the total atom–atom field system can
be written as

|ψ(0)〉 = |ψ(0)〉f ⊗ |ψ(0)〉a =
∑
n=0

qn|n, +, +〉, (2)

where qn = e−n̄/2 αn√
n!

, α = |α| eiϕ , and n̄ = |α|2 is the mean
photon number of the coherent field, and ϕ is the phase angle
of the coherent field (here we take ϕ = 0). The solution of the
Schrödinger wave equation in the interaction picture i.e. the
wavefunction of the system at any time t > 0 is given by

|�(τ)〉 =
∞∑

n=0

qn[c1(n, τ )|n, +, +〉 + c2(n, τ )|n + l, +,−〉

+ c3(n, τ )|n + l,−, +〉 + c4(n, τ )|n + 2l,−,−〉]. (3)

Then we get the explicit forms for the dynamical coefficients
cj (n, τ ), (j = 1, 2, 3, 4) as

c1(n, τ ) = k11 eiγ 1
n τ + k12 eiγ 2

n τ + k13 eiγ 3
n τ ,

c2(n, τ ) = c3(n, τ ) = k21 eiγ 1
n τ + k22 eiγ 2

n τ + k23 eiγ 3
n τ ,

c4(n, τ ) = k31 eiγ 1
n τ + k32 eiγ 2

n τ + k33 eiγ 3
n τ ,

(4)

where

k1u =
(
γ u

n + B
)(

γ u
n + C

) − 2η2(
γ u

n − γ v
n

)(
γ u

n − γ w
n

) ,

k2u = −ζ
(
γ u

n + C
)

(
γ u

n − γ v
n

)(
γ u

n − γ w
n

) ,

k3u = 2ζη(
γ u

n − γ v
n

)(
γ u

n − γ w
n

) ,

u, v,w = (1, 2, 3), u �= v �= w,

(5)

with

γ 1
n = 2

(
−λn

6
+ z

1
3 cos

(
δ

3

))
,

γ 2
n = 2

(
−λn

6
+ z

1
3 cos

(
δ + 2π

3

))
,

γ 3
n = 2

(
−λn

6
+ z

1
3 cos

(
δ + 4π

3

))
,

z =
√

x2 + y2, δ = tan−1 y

x
,

x = 27νn − 9λnμn − 2λ3
n

54
,

y =
√

4
(
3μn + λ2

n

)3 − (
27νn − 9λnμn − 2λ3

n

)2

54

(6)

and

λn = A + B + C,

μn = 2(ζ 2 + η2) − (AB + AC + BC),

νn = 2(ζ 2A + η2C) − ABC, η =
√

(n + 2l)!

(n + l)!
,

ζ =
√

(n + l)!

(n)!
, A = 2n

r
,

B = (1 + r2)(n + l)

r
, C = 2r(n + 2l),

(7)
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where r =
√

β1

β2
, g = √

β1β2 and τ = gt . The quantum phase

properties and Wigner function for this system are discussed
in the following section using the above results. When we
ignore the Stark shift, i.e ignore A, B, C, and take k = 1 we
go back to the case of [18].

3. Quantum phase properties and Wigner function

3.1. Phase properties

In this section, we will analyse the phase properties of the field
in the presence of the Stark shift. We apply the Hermitian
phase operator formalism introduced by Pegg and Barnett
[28–30]. This formalism is based on introducing a finite
(s + 1)-dimensional space spanned by the number states |0〉,
|1〉, . . . , |s〉 for the given mode of the field. The Hermitian
phase operator operates on this finite space and, after all
necessary expectation values have been calculated in the finite-
dimensional space, the value of s is allowed to tend to infinity.
A complete orthonormal basis of (s + 1) states is defined
as

|θm〉 = 1√
s + 1

s∑
n=0

einθm |n〉, (8)

where

θm = θ0 +
2mπ

s + 1
, m = 0, 1, . . . , s. (9)

The value of θ0 is arbitrary and defines a particular basis set of
(s +1) mutually orthogonal phase states. The Hermitian phase
operator is defined as

φ̂θ ≡
s∑

m=0

θm|θm〉〈θm|, (10)

where the subscript θ indicates the dependence on the choice of
θ0. The phase states (equation (8)) are eigenstates of the phase
operator (equation (10)) with the eigenvalues θm restricted to
lie within a phase window between θ0 and θ0 + 2π .

The continuum phase distribution P(θ) is defined as

P(θ) = lim
s→∞

s + 1

2π
〈θm|ρ|θm〉. (11)

In this case, if θm has been replaced by the continuous phase
variable θ, then

P(θ, τ ) = 1

2π

[
1 + 2 Re

∑
m,n:m>n

ρf
nm(τ) e−i(m−n)θ

]
, (12)

where ρ
f
nm(τ) is the element of the reduced field-mode density

matrix ρ, and we can write ρ̂(τ ) in the form:

ρ̂(τ ) =

⎛
⎜⎜⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞
⎟⎟⎠ , (13)

where

ρ11 =
∞∑

n,m=0

qn,mc1(n, τ )c∗
1(m, τ)|n〉〈m|,

ρ22(33) =
∞∑

n,m=0

qn,mc2(3)(n + l, τ )c∗
2(3)(m + l, τ )|n + l〉〈m + l|,

ρ44 =
∞∑

n,m=0

qn,mc4(n + 2l, τ )c∗
4(m + 2l, τ )|n + 2l〉〈m + 2l|,

ρ12(13) =
∞∑

n,m=0

qn,mc1(n + l, τ )c∗
2(3)(m, τ)|n + l〉〈m| = ρ∗

21(31),

ρ14 =
∞∑

n,m=0

qn,mc1(n + 2l, τ )c∗
4(m, τ)|n + 2l〉〈m| = ρ∗

41,

ρ23 =
∞∑

n,m=0

qn,mc2(n + l, τ )c∗
3(m + l, τ )|n + l〉〈m + l| = ρ∗

32,

ρ24(34) =
∞∑

n,m=0

qn,mc2(3)(n + 2l, τ )c∗
4(m + l, τ )|n + 2l〉〈m + l|

= ρ∗
42(43). (14)

Now from equation (13) we can write ρ
f
nm as

ρf
nm(τ) = qn,mc1(n, τ )c∗

1(m, τ) + 2qn−l,m−lc2(n, τ )c∗
2(m, τ)

+ qn−2l,m−2lc4(n, τ )c∗
4(m, τ), (15)

where qn,m = qn q∗
m.

The expectation value of the phase operator moments in
the state described by the density operator ρ is given by

〈θk〉 =
∫ θ0+2π

θ0

θkP (θ) dθ. (16)

Of particular interest in the description of the phase properties
of the field for the two photons with the Stark shift is the phase
variance that can be calculated according to the formula

(�θ)2 =
∫ π

−π

θ2P(θ) dθ − (〈θ〉)2

= π2

3
+ 4 Re

∑
m>n

(−1)m−nρ
f
mn(τ )

(m − n)2
. (17)

The phase probability distribution illustrates the phase
structure of the field mode while the variance provides a good
understanding of the evolution of the field phase fluctuations.

In figures 1 and 2, we have plotted the phase probability
distribution P(θ, τ ) and the phase variance (�φ)2 with respect
to time τ for the two identical 2-level atoms in the case of
the two photons (l = 2) for various values of the parameter
of the Stark shift r for the initial mean photon numbers
|α|2 = 50. When we neglect the Stark shift (see figure 1(a))
clearly describes the time evolution of the phase probability
distribution of the field for the standard two-photon TCM.
As the time proceeds, the peaks of the initial coherent state
centred at θ = 0 split up into small peaks which move away
from each other gradually while there is a strong peak still
centred at θ = 0. When τ = π

2 the small peaks are much
farther apart and meet the boundaries at θ = ±π . Further,
when τ = π the small peaks converge until they meet again,

3
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(a) (b)

(c) (d)

τ/π

θ/π

τ/π

θ/π
τ/π

θ/π

τ/π

θ/π

−
−

−

−

−
−

−

−

Figure 1. The phase distribution P(θ, τ ) for the two identical 2-level atoms, when both atoms initially prepared in the excited state and the
field in a coherent state for the two photons (l = 2) and initial mean photon number |α|2 = 50 for different values of the Stark shift
parameter: (a) in the absence of the Stark shift, (b) r = 0.3, (c) r = 1 (β1 = β2) and (d) r = 5.

but this time at θ = 0 with the strong peak. Thus the time
evolution diagram of the phase probability distribution of the
usual two-photon TCM is very regular; it is symmetric about
θ = 0 and is periodic in time. This is due to the periodic nature
of the interaction phenomenon in the two photons. This can
be attributed to the roots γ i

n which in this case are 0 and
±

√
2(ζ 2 + η2); the amplitudes of the peaks are proportional

to the coefficients k of equation (5).
In the presence of the Stark shift (see figures 1(b) and

(c)), with a small increase in the parameter of the Stark shift
(r = 0.3, figure 1(b)) leads to the localization of the peaks.
Similar behaviour was reported for a single atom under the
Stark shift and Kerr-like medium [42]. The peak centred at
θ = 0 disappears due to the intensity-dependent phase shift
caused by the Stark shift. For r = 1 (see figure 1(c)), at θ = 0
the peak returns to appear again but with small amplitude, and
the values of the phase probability distribution are increasing.
Analysis of the roots γ i

n shows that the two roots have the
same sign but with different amplitudes. This is the reason of
appearance of the two peaks moving away in the same side
of the origin but with different rates and amplitudes. This
becomes more pronounced at higher values of the Stark shift
(figure 1(d) r = 5); the phase probability has a maximum value
at θ = 0, and the other peaks coincide and almost disappear,
as a check of the roots γ i

n can easily show.

Figure 2 shows the plots of the phase variance (�θ)2,
when we neglect the Stark shift (see figure 2(a)), the phase
variance oscillates periodically near π2/3 with the period π .
In the presence of the Stark shift for r = 0.3 (see figure
2(b)), the general frame work of (�θ)2 is completely changed
in the maximum and minimum values, periodic with period
∼= 0.6π and adds sharpening of the peaks. For r = 1 (see
figure 2(c)) the phase variance is as in the case of no Stark
shift but the difference between them is in the appearance
of two shoulders around the peaks. For higher value of the
parameter of the Stark shift (r = 5) (see figure 2(d)) the peaks
are regular, long-lived and periodic with period ∼= 0.4π for
the time. From our results, we note that the Stark shift leads
to damp and diffuse the distribution. With the increase in
the Stark shift parameter r, the maximum values of (�θ)2 are
decreasing; also the collapse and revival phenomena appear
for the phase variance.

3.2. Wigner function W(X, Y)

We display the time evolution of the Wigner function W (X,
Y), where X = Re(α), Y = Im(α) at different times in the
exact resonance with n̄ = 4, We assume that both atoms
are initially prepared in the excited state and the field in a
coherent state. The W(X, Y ) function is informative, sensitive

4
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Figure 2. The phase variance (�φ)2 for the two identical 2-level atoms, when both atoms initially prepared in the excited state and the field
in a coherent state for the two photons (l = 2) and initial mean photon number |α|2 = 50 for different values of the Stark shift parameter:
(a) in the absence of the Stark shift, (b) r = 0.3, (c) r = 1 (β1 = β2) and (d) r = 5.

to the interference in phase space, and can predict the possible
occurrence of the nonclassical effects, which can easily be
evaluated as [43]

W(α, τ) = 2

π

∞∑
p=0

∞∑
m,n=0

(−1)pqn,m

× [c1(n, τ )c∗
1(m, τ)Gp,n(α)Gm,p(α)

+ c2(n, τ )c∗
2(m, τ)Gp,n+l (α)Gm+l,p(α)

+ c3(n, τ )c∗
3(m, τ)Gp,n+l (α)Gm+l,p(α)

+ c4(n, τ )c∗
4(m, τ)Gp,n+2l (α)Gm+2l,p(α)], (18)

where

Gp,n(α) = e
−|α|2

2

min(p,n)∑
j=0

(−α)p−j (α∗)n−j
√

p!n!

(n − j)!(p − j)!(j)!
, (19)

Gm,p(α) = e
−|α|2

2

min(p,m)∑
j=0

(−α∗)p−j (α)m−j
√

p!(m)!

(m − j)!(p − j)!(j)!

= G∗
p,m. (20)

In figures 3–5, we have plotted the Wigner function for the
cavity field at different times

(
t = 0, π

2 , π
)
, with n̄ = 4, when

the field is initially in the coherent state for the two photons
(l = 2) for various values of the Stark shift parameter.

For t = 0, the Wigner function has a Gaussian shape with
a single peak at the point (X = 2, Y = 0) and a round rim
(see figure 3).

−8
−6

−4
−2

0
2

4
6

8

−8−6−4−202468

0

0.1

0.2

0.3

0.4

0.5

X
Y

W
(X

,Y
)

Figure 3. The Wigner function W(X, Y ) against X and Y for the two
atoms prepared initially in the excited state and the field in a
coherent state, for the two photons (l = 2) and n̄ = 4 when τ = 0.

In figure 4, we see the influence of the Stark shift on the
behaviour of the Wigner function at time

(
t = π

2

)
. When

we neglect the Stark shift, we see that the W (X, Y) function
splits into two peaks, several small peaks and an interference
pattern between them. The W (X, Y) function takes negative
values, and the state becomes nonclassical (see figure 4(a)).
In the presence of the Stark shift r = 0.3, the W (X, Y) has
three peaks and interference between them, the state becomes

5
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(a)
(b)

(d)(c)

−

− −

−

− − − −

−−

−

Figure 4. The Wigner function W(X, Y ) against X and Y for the two identical 2-level atoms, when both atoms prepared in the excited state
and the field in a coherent state for the two photons (l = 2) and n̄ = 4 for different values of the Stark shift parameter: (a) in the absence of
the Stark shift, (b) r = 0.3, (c) r = 1 (β1 = β2) and (d) r = 5, for τ = π

2 .

−

− −

−

− −

−−

−

−−

−

(a)
(b)

(d)(c)

Figure 5. The same as in figure 4, but for τ = π .

more nonclassical and the subsidiary peaks nearly disappear
(see figure 4(b)). In the case r = 1 the W (X, Y) function

has two symmetric groups and interference between them; the
peaks are nearly distorted and W (X, Y) has a negative value

6
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(see figure 4(c)). For a higher value of the parameter of the
Stark shift r = 5, the W (X, Y) function has one peak, two very
small peaks, and the negativity of the W (X, Y) function nearly
disappeared (see figure 4(d).

Finally, for t = π the plots are presented in figure 5,
where, neglecting the Stark shift, the W (X, Y) function has one
peak and several small peaks, an interference pattern between
them and negative values (nonclassical) (see figure 5(a). In the
presence of the Stark shift, when r = 0.3, the nonclassicality
(i.e. the negativity) is more pronounced (see figure 5(b)). For
the case of r = 1, see figure 5(c), it is almost the same for the
absence of the Stark shift but with different small peaks. For
r = 5 we note figure 5(d) is as figure 4(d) but they are out of
phase by 90◦.

From the above results we note that the state becomes
nonclassical for

(
t = π

2 , π
)

with various values of the
parameter of the Stark shift r because there is an interaction
between the atoms and the field. For higher values of the
Stark shift parameter r, the Wigner function nearly returns
to Gaussian shape with a very small negative value i.e. the
increase of the parameter of the Stark shift leads to the
disappearance of the negativity, and the state becomes almost
classical.

4. Conclusions

In this paper, we have studied two atoms interacting with
a multi-photon single-mode field in the presence of a Stark
shift. We obtained an analytical solution for this system
when the two atoms are prepared initially in the excited state
and the field initially prepared in a coherent state. We have
investigated the influence of the Stark shift on the behaviour of
the W (X, Y) function, phase distribution and phase variance.
From our results, we note that the Stark shift serves to damp
and diffuse the distribution. With an increase in the Stark shift
parameter (r), the maximum values of (�θ)2 decrease; also the
collapse and revival phenomena appear for the phase variance.
It is noted that in W (X, Y) the state becomes nonclassical for(
τ = π

2 , π
)

with various values of the Stark shift parameter
r. The increase of the Stark shift leads to disappearance of
the negativity, and reintroduction of a Gaussian shape with a
single peak and the state becomes almost classical.
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