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1. Introduction

Differential line geometry examines the set of lines in space with 3-dimension. The ambient space
can be an Euclidean or a non-Euclidean space. It is one of the interesting subdivision of differential
geometry since it is directly connected with the spatial motion (kinematics) and get therefore a lot of
application in mechanism design [1–9].

A line congurence is a two-parameter set of lines in three-dimensional space- is a classical part of
differential geometry, whose origins can be traced to Kummer in his memoir; Allgemeine Theorie der
Gradlinigen Strahen system [1]. The normal vector field of a surface could be given as an example
of line congruence. In this way the line congruence formed by the normal vector field of the surface
constructs a special class, which is called normal line congruence. However, the line congruence does
not usually need to consist only of normal vector field. The lines of the line congruence which pass
through a curve on the surface form a one-parameter family of lines in the space or ruled surface
(parameter ruled surface). Recently, line congruence has become relevant for practical applications
(See for instance [2–7]).

As it is known, the most analytical tool in the study of three-dimensional kinematics and
differential line geometry is based upon the so-called E. Study’s map: The set of all oriented lines in
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Euclidean 3-space E3 is in one-to-one correspondence with set of points of the dual unit sphere in the
dual 3-space D3. It allows a complete generalization for the spherical point geometry to the spatial
line geometry by means of dual-number extension, i.e. replacing all ordinary quantities by the
corresponding dual-number quantities. Hence, the ruled surfaces and line congruence obtained by the
motion of a line, depending on one and two parameters, respectively. There exists a vast literature on
the subject including several monographs, such as [6, 8–11].

This work develops the kinematic-geometry for line congruence in the space of lines by using the
analogy with theory of surfaces. Then the well known formulae of J. Liouville, Hamilton, and
Mannheim of surfaces theory are proved for the line congruence. Moreover, a new geometrical
interpretation of J. Liouville formula has been defined for a given closed ruled surface in the line
congruence. The Plücker conoid associated with the line congruence has been derived and it is shown
that the principal axes of it are located at its center and at right angles. Finally, an example of
application is investigated and explained in detail.

2. Preliminaries

In this section we list some notions, formulas of dual numbers and dual vectors (See for instance [1–
6]). Therefore we start with recalling the use of appropriate line coordinates: An oriented line L in the
Euclidean 3-space E3 can be determined by a point p ∈ L and a normalized direction vector x of L, i.e.
‖x‖ = 1. To obtain components for L, one forms the moment vector

x∗ = p × x (2.1)

with respect to the origin point in E3. If p is substituted by any point

q = p+µx, µ ∈ R (2.2)

on L, then Eq (2.1) implies that x∗ is independent of p on L. The two vectors x and x∗ are not
independent of one another; they satisfy the following relationships:

< x, x >=1, < x∗, x >=0. (2.3)

The six components xi, x∗i (i = 1, 2, 3) of x and x∗are called the normalized Plűcker coordinates of the
line L. Hence the two vectors x and x∗ determine the oriented line L.

In line geometry, from a kinematic point of view, a line congruence (congruence for shortness) is
a two-parameter set of lines in E3 generated by a straight line L moving along a surface. The various
positions of the generating lines are called the rulings or generators of the congruence. This congruence
holds a parameterization as form

Q : Y(u1, u2, v) = y(u1, u2) + vr(u1, u2), v ∈ R. (2.4)

Here y = y(u1, u2) is called the director surface, r = r(u1, u2) is the unit vector giving the direction of
generating line of the congruence, u1, u2 are the motion parameters, and v is the parameter of its points
indicating the singed distance of the corresponding point on y = y(u1, u2). The equations

u1 = u1(t), u2 = u2(t), u
′2
1 + u

′2
2 , 0, t ∈ R, (2.5)
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define a ruled surface belonging to the congruence. It is a developable if and only if the determinate

(r, dy, dr) = 0. (2.6)

Ruled surfaces (such as cylinders and cones) contain rulings where the tangent plane touches the
surface along the entire line. Such rulings are called torsal lines, to distinguish them from the
common case of the non-torsal generators [6, 11–13]:
• Ruled surfaces with exclusively torsal generators are called developable surfaces;
• Ruled surfaces consisting largely of non-torsal generators are called skew ruled surfaces (or warped
ruled surfaces);
• Cylinders, cones, and ruled surfaces that consist of tangents of a spatial curve are developable
surfaces.

Definition 1. The singular surface points of a torsal generator is called its cuspidal point, and the
tangent plane in its other direction is called torsal plane.

2.1. E. Study’s map

The set of dual numbers is

D = {X = x + εx∗ | x, x∗ ∈ R, ε , 0, ε2 = 0}. (2.7)

This set is a commutative ring under addition and multiplication. This set cannot be a field under
these operations, because 0 + εx∗ has no multiplication inverse in D. But this ring has a unit element
according to multiplication. A dual number X = x + εx∗, is called proper if x , 0. An example of
dual number is the dual angle subtended by two skew lines in the Euclidean 3-space E3 and defined as
Θ = ϑ+ εϑ∗ in which ϑ and ϑ∗ are, respectively, the projected angle and the minimal distance between
the two lines.

For all pairs (x, x∗) ∈ E3 × E3 the set

D3 = {X = x + εx∗, ε , 0, ε2 = 0}, (2.8)

together with the scalar product

< X,Y >=< x, y > + ε(< y, x∗ > + < y∗, x >), (2.9)

forms the dual 3-space D3. Thereby a point X = (X1, X2, X3)t has dual coordinates Xi = (xi + εx∗i ) ∈ D.
The norm is defined by

< X,X >
1
2 := ‖X‖ = ‖x‖ (1+ε

< x, x∗ >
‖x‖2

). (2.10)

In the dual 3-space D3 the dual unit sphere is defined by

K = {X ∈D3 | ‖X‖2 = X2
1 + X2

2 + X2
3 = 1}. (2.11)

Definition of dual unit sphere gives us that all points X of K must satisfy two equations

x2
1 + x2

2 + x2
3 = 1, x1x∗1 + x2x∗2 + x3x∗3 = 0. (2.12)
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Via this we have the following map (E. Study’s map): The set of all oriented lines in the Euclidean 3-
space E3 is in one-to-one correspondence with the set of points of dual unit sphere in the dual 3-space
D3. By using this correspondence, one can derive the properties of the spatial motion of a line. Hence,
the geometry of ruled surface is represented by the geometry of curves on the dual unit sphere in D3.
Therefore, the dual curve and ruled surfaces are synonymous in this paper.

2.2. Line congruence as a dual region on K

The E. Study’s map admits us to revision Eq (2.4) using the dual vector function as

R(u1, u2) = r(u1, u2) + εy(u1, u2) × r(u1, u2) = r(u1, u2) + εr∗(u1, u2), (2.13)

where r∗ is the moment of r about the origin in E3. Since the spherical image r(u1, u2) is a unit vector,
then the dual vector R(u1, u2) also has unit magnitude as is seen from the computations:

< R,R > = < r, r > +2ε < r, y × r > +ε2 < y × r, y × r > =< r, r >=1.

Thus the line congruence fills a domain on dual unit sphere K in D3. Hence, the line congruence can
be viewed as a two-dimensional surface in D3-space. It follows that there are resemblances between
theory of surface and theory of line congruence.

A relationship such as f (u1, u2) = 0 between the parameters u1, u2 reduces the congruence to
a one-parameter set of lines (a ruled surface) in the congruence R(u1, u2). The equations u2 = c2

and u1 = c1(real constants) determines parameter ruled surfaces given by the parameter dual curves
R = R(u1, c2) and R = R(c1, u2), respectively.

Definition 2. A line congruence is torsal, if the ruled surfaces defined by u1 =const. are developable,
and so are the ones defined by u2 =const.

If L any function, scalar or vector, defined for the line congruence, we shall denote Lu1 , and Lu2 by
∂L/∂u1, and ∂L/∂u2, respectively. Thus Ru1 is a dual tangent vector in direction which u1 alone varies,
similarly for Ru2 . Therefore,

< Ru1 ,Ru1>=E = e + εe∗,
< Ru1 ,Ru2>=F = f + ε f ∗,
< Ru2 ,Ru2>=G = g + εg∗.

 (2.14)

Thus, we arrive by means of the real and dual parts of Eq (2.14), at

e =< ru1 , ru1>, e∗ = 2 < ru1 , r∗u1
>,

f =< ru1 , ru2>, f ∗ =< ru1 , r∗u2
> + < r∗u1

, ru2>,

g =< ru2 , ru2>, g∗ = 2 < ru2 , r∗u2
> .

 (2.15)

Now we consider two neighboring dual points, with position vectors R and R+dR, from (u1, u2) to
(u1 + du1, u2 + du2), respectively. Then

dR = Ru1du1 + Ru2du2. (2.16)

Since the two dual points are adjacent points on a dual curve passing through them, the dual arc length
dS (= ds + εds∗) is

dS 2 =< dR,dR >=< Ru1du1 + Ru2du2,Ru1du1 + Ru2du2 >,
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or finally,
dS 2 = Edu2

1 + 2Fdu1du2 + Gdu2
2. (2.17)

By separating the real and dual parts of this equation, respectively, we get

I(u1, u2) := ds2 =< dr,dr> = edu2
1 + 2 f du1du2 + gdu2

2, (2.18)

and
II(u1, u2) := 2dsds∗ =< dr,dr∗> = e∗du2

1 + 2 f ∗du1du2 + g∗du2
2. (2.19)

The forms I and II are called the first and second fundamental forms of the line congruence,
respectively. The distribution parameter of a ruled surface belong to the congruence is given
by [10, 11]

λ =
1
2

( II
I

)
=

e∗du2
1 + 2 f ∗du1du2 + g∗du2

2

edu2
1 + 2 f du1du2 + gdu2

2

. (2.20)

A ruled surface belong to the congruence for which

e∗du2
1 + 2 f ∗du1du2 + g∗du2

2 = 0 (2.21)

is a developable surface. If we let η = du1/du2, we can write

e∗η2 + 2 f ∗η + g∗ = 0. (2.22)

For developable surfaces of the congruence, we equate the coefficients of the Eq (2.22) to zero
identically, and we can write

e∗ = 2 < ru1 , r∗u1
>=0,

f ∗ =< ru1 , r∗u2
> + < r∗u1

, ru2>=0,
g∗ = 2 < ru2 , r∗u2

>=0.

 (2.23)

2.3. Blaschke moving frames

Through every line in the congruence there pass two principal surfaces whose images on the dual
unit sphere we take as parameter curves. For this special system we assume that u1, and u2 dual curves
of R(u1, u2) are principal ruled surfaces, i.e., the elements f and f ∗ of the first and second fundamental
forms vanish identically ( f = f ∗ = 0). So, according to Eq (2.17), the dual arc length of the dual
curves u2 = c2(real const.), and u1 = c1(real const.), respectively are dS 1 = ds1 + εds∗1 =

√
Edu1 and

dS 2 = ds2 + εds∗2 =
√

Gdu2.
In order to examine the geometrical properties of the congruence, we set up a moving frame

coincident with the point on the sphere. If we label the point on the sphere, the generator as R(u1, u2),
then the Blaschke frame can be set up [10, 11, 15]

R12 =
Ru1∥∥∥Ru1

∥∥∥ =
Ru1
√

E
, R22 =

Ru2∥∥∥Ru2

∥∥∥ =
Ru1
√

G
, R = R12 × R22, (2.24)

which are invariants vector functions on the congruence Q; we fix det(R, R12,R22) = +1 and
consequently

λ =
1
2

(
e∗du2

1 + g∗du2
2

edu2
1 + gdu2

2

) =
e∗

2
(
du1

ds
)2 +

g∗

2
(
du2

ds
)2. (2.25)

AIMS Mathematics Volume 6, Issue 10, 11109–11123.



11114

The extreme values of the distribution parameter, corresponding to the principal surfaces R(u1, c2), and
R(c1, u2), respectively, are obtained by

λ1 :=
ds∗1
ds1

=
e∗

2e
, λ2 :=

ds∗2
ds2

=
g∗

2g
. (2.26)

According to the elements of spherical kinematics, the motion of the frame {O; R, R12, R22} at any
instant is a rotation around the Darboux vector of this frame. Hence, by means of the derivatives with
respect to the dual arc-length parameter of the dual curves u2 = c2 with tangent R12, the derivative
formula is [10, 15]

∂

∂S 1


R
R12

R22

 =


0 1 0
−1 0 Σ1

0 −Σ1 0




R
R12

R22

 = Ω1 ×


R
R12

R22

 , (2.27)

where
Ω1 = Σ1R + R22. (2.28)

Σ1 = σ1 + εσ∗1 = −
Eu2

2E
√

G
is the geodesic curvature of the dual curves R(u1, c2). Similarly, the derivative

formula of the Blaschke frame of the dual curves R(c1, u2), with tangent R22 is

∂

∂S 2


R
R12

R22

 =


0 0 1
0 0 Σ2

−1 −Σ2 0




R
R12

R22

 = Ω2 ×


R
R12

R22

 , (2.29)

where
Ω2 = Σ2R − R12. (2.30)

Σ2 = σ2 + εσ∗2 =
Gu1

2G
√

E
has the same meaning as in Eq (2.27). In other words, dual geodesic curvatures

of the dual curves R(u1, c2), and R(c1, u2), respectively, are

Σi = σi + εσ∗i = det
(
R,

dR
dS i

,
d2R
dS 2

i

)
, (i = 1, 2). (2.31)

3. Main results

Consider ui = ui(t), (i = 1, 2) as functions of real parameter t ∈ R. Then
R = R(u1(t), u2(t)) represents a ruled surface in the congruence Q. The dual vector Rt = (∂R/∂t) is
tangent to this dual curve;

Rt = Ru1

du1

dt
+ Ru2

du2

dt
. (3.1)

If < Rt,Rt >, 0, then we have a dual unit vector

R2 =
Rt

‖Rt‖
=

1
P

(
Ru1

du1

dt
+ Ru2

du2

dt

)
, (3.2)

where P = p + εp∗ =
∥∥∥Ru1

du1
dt + Ru2

du2
dt

∥∥∥ =
√

EG. Hence, the dual arc length of the dual curve
R = R(u1(t), u2(t)) is given by

dS = ds + εds∗ = Pdt. (3.3)
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In order to research the properties of R = R(u1(t), u2(t)), the Blaschke frame relative to R(t) will be
defined as the frame of which this line and the central normal R2 to the ruled surface at the central
point of R are two edges. The third edge R3 is the central tangent to the ruled surface R(t). Likwise,
the frame {R1 = R(t), R2 = Rt

‖Rt‖
, R3(t) = R1 × R2} is called Blaschke frame. Then we have

d
dS


R1

R2

R3

 =


0 1 0
−1 0 Σ

0 −Σ 0




R1

R2

R3

 = Ω ×


R1

R2

R3

 , (3.4)

where
Ω = ΣR1 + R3, (3.5)

Σ = σ + εσ∗ is the dual geodesic curvature of the dual curve R(t) = R(u1(t), u2(t)). It is easily seen
from the last two equations that

Σ = σ + εσ∗ =
det (R,Rt,Rtt)
‖Rt‖

2 = det
(
R,

dR
dS

,
d2R
dS 2

)
. (3.6)

Referring to the congruence Q, since Rt is tangent of the dual curve R(t), then Eq (3.2) rewritten as

R2 =
dS 1

dS
R12 +

dS 2

dS
R22. (3.7)

So, we can find a dual angle Θ = ϑ + εϑ∗ such that (Figure 1)(
R2

R3

)
=

(
cos Θ sin Θ

− sin Θ cos Θ

) (
R12

R22

)
, (3.8)

where
dS 2 = dS 2

1 + dS 2
2,

cos Θ = dS 1
dS =

√
E du1

dS , sin Θ = dS 2
dS =

√
G du2

dS .

}
(3.9)

Figure 1. R2 = cos ΘR12 + sin ΘR22.
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By simple verification, it follows that

dR2

dS
=
∂R2

∂S 1

dS 1

dS
+
∂R2

∂S 2

dS 2

dS
, (3.10)

we get

dR2

dS
=

(
∂R12

∂S 2
+
∂R22

∂S 1

)
sin Θ cos Θ +

∂R12

∂S 1
cos2 Θ +

∂R22

∂S 2
sin2 Θ

+ (−R12 sin Θ + R22 cos Θ)
dΘ

dS
. (3.11)

From Eqs (2.27), (2.29) and (3.8) it follows that

dR2

dS
=

(
Σ1 cos Θ + Σ2 sin Θ +

dΘ

dS

)
R3 − R1. (3.12)

Thus, from Eqs (3.4) and (3.12), one finds that

Σ=Σ1 cos Θ + Σ2 sin Θ +
dΘ

dS
. (3.13)

This formula has the same nature of J. Liouville’s formula in surface theory [1, 6, 9].

3.1. The dual angle of pitch

In this subsection we give a geometric characterization of the of J. Liouvile’s formula. For this
purpose, if R1(t) = R1(t + 2π) then R1(t) is called a closed differentiable curve. According to E.
Study’s map, this corresponds to R1(t)-closed ruled surface belong to the line congruence. Also, let R2

generates a developable ruled surface (torse) along the orthogonal trajectory of the R1(t)-closed ruled
surface. From Eq (3.12), this is expressed by

dR2

dS
× R1 = 0⇒ Σ1 cos Θ + Σ2 sin Θ +

dΘ

dS
= 0. (3.14)

Then we call the total differential of Θ as the dual angle of pitch of the R1(t)-closed ruled surface.
Thus, if it is denoted the dual angle of pitch of the R1(t)-closed ruled surface by the symbol Λ1, then it
can be written

Λ1 = λ1 − εL1 :=
∮

dΘ, (3.15)

where λr is the angel of pitch and Lr is the pitch of the R1(t)-closed ruled surface. The pitch and the
angle of pitch are well-known real integral invariants of a closed ruled surface [10, 14–16].
Equations (3.14) and (3.15) shown that

Λ1 = −

∮
(Σ1 cos Θ + Σ2 sin Θ) dS . (3.16)

We found by application of Green’s formula, that

Λ1 = −

" (
∂

∂u1

(
Σ2

√
G
)
−

∂

∂u2

(
Σ1

√
E
))

du1du2. (3.17)
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Since the Gaussian curvature of the dual unit sphere can be written by

1 =
1
√

EG

(
∂

∂u1

(
Σ2

√
G
)
−

∂

∂u2

(
Σ1

√
E
))
. (3.18)

So that, we obtain as a result the formula

Λ1 = −

"
dA1, (3.19)

where dA1 =
√

EGdu1du2 is the dual area on the dual unit sphere enclosed by the closed dual curve
R1(t) = R1(t + 2π). Hence the following theorem is proved.

Theorem 1. For a closed ruled surface in the Euclidean 3-space E3. The dual angel of pitch is equal
to minus the total dual spherical area of its dual image.

In fact from Eqs (3.9) and (3.19), we have that

Λ1 := −
"

dS 1dS 2 = −

"
(1 + ελ1) (1 + ελ2) ds1ds2. (3.20)

If we separate the real and dual parts of Eq (3.20), then we find

λ1 = −a1, and L1 =

"
(λ1 + λ2) ds1ds2, (3.21)

where a1 is the element of area on real unit sphere enclosed by the real spherical curve r1(t) = r1(t+2π).
More explicitly, we can rewrite Eq (3.16) as

Λ1 = −

∮
<
∂R12

∂S 1
,R22 > dS 1 +

∮
<
∂R22

∂S 1
,R12 > dS 2, (3.22)

and shown that
Λ1 = Λr1 − Λr2 , (3.23)

where Λr1 , and Λr2 are the dual angel of pitches of the principal ruled surfaces R = R(u1, c2) and
R = R(c1, u2), respectively.

3.2. Plücker conoid and Dupin’s indicatrix

By separating the real and dual parts of Eq (3.9), bearing in mind Eqs (2.25) and (2.26), we get

λ = λ1 cos2 ϑ + λ2 sin2 ϑ,

ϑ∗ = (λ2−λ1
2 ) sin 2ϑ.

}
(3.24)

These formulas are Hamilton and Mannhiem formulae of surfaces theory in Euclidean 3-space,
respectively [1]. The surface described by ϑ∗ in Eq (3.24) is the Plücker conoid. The Plücker conoid
is a smooth regular ruled surface sometimes also called the cylindroid [1, 6, 9].

The parametric form can also be given in terms of point coordinates. We may choose R1 is
coincident with the z−axis of a fixed frame (oxyz), while the position of the dual unit vector R2 is
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given by angle ϑ and distance ϑ∗ along the positive z−axis. The oriented lines R12 and R22 can be
selected in sense of x and y−axes, respectively, as depicted in Figure 2. Clearly, Hamilton’s formula
shows that the angle ϑ varies from 0 to π

2 as λ varies from λ1 to λ2, the principal surfaces being
perpendicular to each other. This shows that the oriented lines R12 and R22 are the principal axes and
together with the oriented line R1 create the fundamental coordinate system of the Plücker’s conoid.
Let ζ denote a point on this surface, it is possible to have the following point coordinates:

ζ(ϑ, ϑ∗, υ)=(0, 0, ϑ∗) + υ(cosϑ, sinϑ, 0), υ ∈ R. (3.25)

Figure 2. Plücker conoid.

Thus, the z−axis acts as base curve and the circle ϑ → (cosϑ, sinϑ, 0) as director curve for the
parametrization. Using this parametrization, the rulings are clearly visible passing through the z−axis,
namely,

x = υ cosϑ, y = υ sinϑ and ϑ∗ := z =
(λ2 − λ1)

2
sin 2ϑ, (3.26)

which gives us the intersection point of the principal axes R12 and R22 lies at a half of the conoid height
ϑ∗. It can easily be verified by direct computations that(

x2 + y2
)

z + (λ1 − λ2) xy = 0, (3.27)

The Eq (3.27) shows that the Plücker’s conoid has two integral invariants of the first order, λ1, and
λ2. It is assumed by convention that λ1 > λ2. The Plücker’s conoid depends only on their difference;
λ1 − λ2 = 1, ϑ ∈ [0, 2π], υ ∈ [−1, 1] (Figure 2). This surface has two torsal planes π1, π2 and each
of which contains one torsal line L as follow: Solving for y

x , one obtains a second-order algebraic
equation, whose roots are:

y
x

=
1
2z

[
λ2 − λ1 ±

√
(λ2 − λ1)2

− 4z2

]
, (3.28)

The limit points of the Plücker’s conoid can be determined by the vanishing of the discriminant of
Eq (3.19), which leads to the two extreme positions, that is,

2z = ± (λ2 − λ1) . (3.29)
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According to the value of λ in Eq (3.28), the geometric properties of the Plücker’s conoid are discussed
as follows:

A- If the parameter ruled surface R(t) = R(u1(t), u2(t)) is a non-developable surface, i.e. λ , 0,
then there are two real generators passing through the point (0, 0, z) only if z < (λ2 − λ1) /2; for the two
limit points z = ± (λ2 − λ1) /2 they coincide with the principal axes R12 and R22.

B- If the parameter ruled surface R(t) = R(u1(t), u2(t)) is a developable surface, i.e. λ = 0, then
their two torsal lines L1, L2 are represented by

L1, L2 :
y
x

= tanϑ = ±

√
−
λ1

λ2
, z = ± (λ2 − λ1) /2, (3.30)

Thus the two torsal lines L1, and L2 are perpendicular each other, however, only real if λ1λ2 ≤ 0. Hence,
in this special case, if λ1 and λ2 have the same value, it follows that the Plücker’s conoid degenerates
into the pencil of lines through “o” in the torsal plane z = 0 (and the two isotropic planes through
z−axis). Such a line congruence is called an elliptic line congruence. If, however, λ1 and λ2 have
opposite signs, the lines L1 and L2 are real and they coincide with the generating lines R12 and R22.
Such a line congruence is a hyperbolic line congruence. If either λ1 or λ2 is zero the line congruence
is a parabolic line congruence, the lines L1 and L2 both coincide with x−axis; for λ1 , 0, and λ2 = 0
they coincide with y−axis.

Transition from polar coordinates to Cartesian coordinates could be performed by substituting

x =
cosϑ
√
λ

, y =
sinϑ
√
λ
, (3.31)

into Hamilton’s formula, one obtain the equation

D : |λ1| x2 + |λ2| y2 = 1, (3.32)

of a conic section. As for theory of surfaces, this conic section is the Dupin’s indicatrix of the line
congruence. We now examine three cases in detail:

(1) If λ1, and λ2 are both positive, the Dupin’s indicatrix is an ellipse has the principal semi-axes
are 1

√
λ1

, and 1
√
λ2

. The lines through the center intersects the ellipse in the points

x = ±
cosϑ
√
λ

, y = ±
sinϑ
√
λ
. (3.33)

The distance intercepted by the ellipse on the line y
x = tanϑ is (See Figure 3):

√
x2 + y2 =

1
√
λ
. (3.34)
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Figure 3. Dupin’s indicatrix with λ1 and λ2 are both positive.

(2) If λ1, and λ2 have opposite signs the Dupin’s indicatrix is set of conjugate hyperbolas

D : λ1x2 ∓ λ2y2 = ±1, (3.35)

shown in Figure 4. The two asymptotic directions of the hyperbolas represent the torsal lines at which
λ = 0.

Figure 4. Dupin’s indicatrix with λ1 and λ2 have opposite signs.

(3) If either λ1 or λ2 is zero the Dupin’s indicatrix is a set of parallels lines corresponding to one of
the forms

y2 =

∣∣∣∣∣ 1
λ2

∣∣∣∣∣ with λ1 = 0, or x2 =

∣∣∣∣∣ 1
λ1

∣∣∣∣∣ with λ2 = 0.

3.3. Developable ruled surfaces

The parametric equation of the dual unit sphere K = {R ∈D3 | R2
1 + R2

2 + R2
3 = 1}, may be given by

the equations
R1 = cos Θ sin Φ, R2 = sin Θ sin Φ, R3 = cos Φ, (3.36)

where Θ = ϑ + εϑ∗, and Φ = ϕ + εϕ∗ are dual angles with −π ≤ ϑ ≤ π, and −π2 ≤ ϕ ≤
π
2 . Separating

Eq (3.36) into real and dual parts we obtain

r1 = cosϑ sinϕ, r2 = sinϑ sinϕ, r3 = cosϕ, (3.37)
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and
r∗1 = −ϑ∗ sinϑ sinϕ + ϕ∗ cosϕ cosϑ,
r∗2 = ϑ∗ cosϑ sinϕ + ϕ∗ cosϕ sinϑ,

r∗3 = −ϕ∗ sinϕ.

 (3.38)

These coordinates represent the four parameter family of lines in E3. To form line congruence, which
describes a two-real parameter motion on the dual unit sphere, we may assume that ϑ∗ = ϑ∗ (ϑ, ϕ), and
ϕ∗ = ϕ∗ (ϑ, ϕ). Thus, the line congruence is given by

R(ϑ, ϕ) = (cosϑ sinϕ, sinϑ sinϕ, cosϕ) (3.39)

+ε

[
ϑ∗ (− sinϑ sinϕ, cosϑ sinϕ, 0)

+ϕ∗ (cosϑ cosϕ, sinϑ cosϕ,− sinϕ)

]
.

According to Eqs (2.15) and (2.23), we obtain that

e = sin2 ϕ, f = 0, g = 1, e∗ = 2(∂ϑ
∗

∂ϑ
sinϕ + ϕ∗ cosϕ) sinϕ,

f ∗ = (∂ϑ
∗

∂ϕ
sin2 ϕ +

∂ϕ∗

∂ϑ
), g∗ = 2∂ϕ∗

∂ϕ
.

 (3.40)

Thus,

λ =
(∂ϑ

∗

∂ϑ
sinϕ + ϕ∗ cosϕ) sinϕdϑ2 + (∂ϑ

∗

∂ϕ
sin2 ϕ +

∂ϕ∗

∂ϑ
)dϑdϕ +

∂ϕ∗

∂ϕ
dϕ2

sin2 ϕdϑ2 + dϕ2
. (3.41)

In order to identify the principal ruled surfaces of the line congruence, from Eq (3.40), we have

F = f + ε f ∗ = 0⇔ ϕ∗ = cosϑ, and ϑ∗ = − sinϑ cotϕ, (3.42)

which yields λ = e∗ = g∗ = f ∗ = 0. Therefore, the principal ruled surfaces are developable ruled
surfaces of the line congruence.

Now we may calculate the equation of the developable ruled surfaces of the congruence R = R(ϑ, ϕ)
in terms of the Plücker coordinates as follows: Since y × r = r∗ we have the system of linear equations
in y1, y2 and y3 (yis are the coordinates of y)

y2 cosϕ − y3 sinϑ sinϕ = cosϕ,
−y1 cosϕ + y3 cosϑ sinϕ = 0,

y1 sinϑ sinϕ − y2 cosϑ sinϕ = − cosϑ sinϕ.

 (3.43)

The matrix of coefficients of unknowns y, y2 and y3 is the skew-symmetric matrix
0 cosϕ − sinϑ sinϕ

− cosϕ 0 cosϑ sinϕ
sinϑ sinϕ − cosϑ sinϕ 0

 ,
and therefore its rank is 2 with ϕ , 0, and ϑ , 0. Also the rank of the augmented matrix

0 cosϕ − sinϑ sinϕ cosϕ
− cosϕ 0 cosϑ sinϕ 0
sinϑ sinϕ − cosϑ sinϕ 0 − cosϑ sinϕ

 ,
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is 2. Hence this system has infinite solutions given by

y1 = y3 tanϕ cosϑ, y2 = y3 tanϕ sinϑ + 1, y3 = y3(ϑ, ϕ). (3.44)

Since y3(ϑ, ϕ) can be chosen arbitrarily, then we may take y3−ϑ
∗ = 0. In this case, Eq (3.44) reduces to

y1(ϑ, ϕ) = − cosϑ sinϑ, y2(ϑ, ϕ) = cos2 ϑ, , y3(ϑ, ϕ) = − sinϑ cotϕ. (3.45)

According to Eqs (3.37) and (3.45) we obtain

Y(ϑ, ϕ, v) = (− cosϑ sinϑ + v cosϑ sinϕ, cos2 ϑ + v sinϑ sinϕ,− sinϑ cotϕ + v cosϕ).

It is very clear that if the functions ϑ, and ϕ are given, then the following developable can be
determined. The developable of the congruence is obtained for ϑ(t) = ϕ(t) = t ∈ R, ϑ = const, and
ϕ = const , see Figure 5.

Figure 5. Developable surface of the congruence.

4. Conclusions

This work mainly deals with the dual representation of line congruence and explains the
resemblance between theory of surfaces and theory of line congruences. In terms of this, several some
new and well-known formulae of line congruence in the Euclidean 3-space have been introduced.
Furthermore, we determine kinematic-geometry of the Plucker conoid and its characterization. In
addition, the degenerated cases of the Plücker conoid are discussed according to the Dupin’s
indicatrix having specific trajectories. We hope that this work will lead to a wider usage in the
differential line geometry and rational design of space mechanisms.
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