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Abstract

The aim of this paper is to prove some common and coupled random fixed point theorems for a pair
of weakly monotone random operators satisfying some rational type contraction in the setting of partially
ordered S−metric space. Our results extend and generalize many existing results in the literature. Moreover,
an example is given to support our results. Finally, the results are used to prove the existence and uniqueness
of solution of some random functional equations. c⃝2017 All rights reserved.
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1. Introduction

The metric fixed point theory is very important and useful in Mathematics. It can be applied in various
areas, for instant, variational inequalities, optimization and approximation theory. There were many authors
introduced the generalizations of a metric space such as Gahler [6] (called 2-metric space) and Dhage [4]
(called D−metric spaces). In 2003, Mustafa and Sims [16] presented some remarks and examples which show
that many of the claims concerning the topological structure of D−metric space are incorrect. Consequently,
they introduced a more generalized metric space (called G−metric spaces). In 2012, Sedghi et al. [26]
introduced a more general space namely S−metric space which generalizes D−metric and G−metric spaces
and proved fixed point theorems in this space.

The existence of fixed points for monotone operators in partially ordered metric spaces has been consid-
ered in [24] with some applications to matrix equations, then Nieto and López [21, 22] extended these results
and applied them to study a problem of ordinary differential equations. In [1] Gnana-Bhaskar and Lak-
shmikantham introduced the concept of coupled fixed point for mixed monotone operator and established
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fixed point theorems in partially ordered metric spaces, then they discussed the existence and uniqueness
of solution for a periodic boundary value problem as an application. Moreover, Lakshmikantham and Ćirić
[14] studied coupled coincidence and common fixed point theorems for nonlinear contractions in partially
ordered metric spaces. The same authors Ćirić and Lakshmikantham [3] also studied some coupled random
coincidence and coupled random fixed point theorems for a pair of random mappings under certain contrac-
tive conditions in partially ordered complete separable metric spaces. Following that, many authors worked
on these topics (see e. g. [9, 13, 15, 28, 29]).

Random fixed point theorems are stochastic generalizations of classical fixed point theorems and play
an important role in the theory of random integral equations and random differential equations. Because of
their importance, random fixed point theorems for contractive mapping on complete separable metric space
have been proved by several authors (see [2, 11, 12, 20, 23, 27, 30, 31]).

2. Preliminaries

First we begin with the following definitions and results in the framework of S−metric space.

Definition 2.1 ([26]). Let X be a non-empty set. An S−metric on X is a function S : X3 → [0,∞) that
satisfies the following conditions for each x, y, z, a ∈ X,

(S1) S(x, y, z) ≥ 0,

(S2) S(x, y, z) = 0 ⇔ x = y = z,

(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S−metric space.

Example 2.2. Let X = R and the distance function S : X3 → [0,∞) be defined as

S(x, y, z) = |x− z|+ |y − z|, ∀ x, y, z ∈ X.

Then (X,S) is a complete S− metric space.

Lemma 2.3 ([26]). In an S−metric space, we have S(x, x, y) = S(y, y, x).

Lemma 2.4 ([5]). Let (X,S) be an S− metric space. Then S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z) for all
x, y, z ∈ X.

Definition 2.5 ([26]). Let (X,S) be an S-metric space. For x ∈ X and r > 0, we define the open ball
BS(x, r) and the closed ball BS(x, r) with center x and radius r as follows

BS(x, r) = {y ∈ X : S(x, x, y) < r}, BS(x, r) = {y ∈ X : S(x, x, y) ≤ r}.

Definition 2.6 ([26]). Let (X,S) be an S-metric space and A ⊆ X:

(1) A sequence {xn} in X converges to x if and only if S(xn, xn, x) → 0 as n → ∞.

(2) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm) → 0 as n,m → ∞.

(3) The S-metric space (X,S) is said to be complete if every Cauchy sequence is convergent.

Lemma 2.7 ([26]). Let (X,S) be an S−metric space. If there exist sequences {xn} and {yn} such that
limn→∞ xn = x and limn→∞ yn = y, then limn→∞ S(xn, xn, yn) = S(x, x, y).

Definition 2.8. The S− metric space (X,S) is called separable if it has a countable dense subset A ⊂ X.
That is there are x1, x2, ... ∈ X such that {x1, x2, ...} = X (A denotes the closure of A).
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Lemma 2.9. A set A ⊂ X is dense in X if and only if for any x ∈ X and r > 0 we can find xi ∈ A such
that xi ∈ BS(x, r).

Definition 2.10. A triple (X,S,⪯) is called a partially ordered S− metric space if the pair (X,⪯) is a
partially ordered set endowed with an S− metric on X.

Definition 2.11 ([1]). Let (X,⪯) be an ordered set and F : X ×X → X be a mapping. Then F is said
to has the mixed monotone property if F is monotone non-decreasing in its first argument and monotone
non-increasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ⪯ x2 implies F (x1, y) ⪯ F (x2, y),

and
y1, y2 ∈ X, y1 ⪯ y2 implies F (x, y1) ⪰ F (x, y2).

Definition 2.12 ([1]). An element (x, y) ∈ X × X is called a coupled fixed point of the mapping F :
X ×X → X, if

F (x, y) = x, F (y, x) = y.

In 2012, Gordii et al. [7] introduced the concept of the mixed weakly increasing property of mappings
and proved a coupled common fixed point result for two single-valued mappings. Then Gupta and Deep
[10] used altering distance function to generalize these results in S−metric space.

Definition 2.13 ([7]). Let (X,⪯) be a partially ordered set and F,G : X ×X → X be mappings. We say
that a pair F,G has the mixed weakly monotone property on X if for any x, y ∈ X

x ⪯ F (x, y), y ⪰ F (y, x),

⇒ F (x, y) ⪯ G(F (x, y), F (y, x)), F (y, x) ⪰ G(F (y, x), F (x, y)),

and

x ⪯ G(x, y), y ⪰ G(y, x),

⇒ G(x, y) ⪯ F (G(x, y), G(y, x)), G(y, x) ⪰ F (G(y, x), G(x, y)).

Throughout the paper, we follow the notions of Ćirić and Lakshmikantham [3]: Let (Ω,Σ) be a mea-
surable space with sigma algebra Σ generated by all measurable subsets of Ω and (X,S) be an S− metric
space with Borel σ− algebra B = B(X) (which is the smallest σ− algebra that contains all open sub-
sets of X). A mapping ξ : Ω → X is called σ− measurable if for any open subset U of X, the set
ξ−1(U) = {ω ∈ Ω : ξ(ω) ∈ U} is measurable. Notice that when we say that a set A is ”measurable”
we mean that A is σ− measurable. A mapping f : Ω × X → X is called a random operator if f(., x) is
measurable for any x ∈ X. A measurable mapping ξ : Ω → X is called a random fixed of f : Ω ×X → X
if ξ(ω) = f(ω, ξ(ω)) for all ω ∈ Ω. A mapping T : Ω × X → X is called a random operator if T (., x) is
measurable for any x ∈ X. A measurable mapping ξ : Ω → X is called a random fixed point of a random
function T : Ω×X → X if ξ(ω) = T (ω, ξ(ω)) for every ω ∈ Ω. A measurable mapping ξ : Ω → X is called
a random coincidence of T : Ω×X → X and g : Ω×X → X if g(ω, ξ(ω)) = T (ω, ξ(ω)) for every ω ∈ Ω.

In this paper, we consider the following class of pairs of functions ℑ (for more discussion and examples
on these functions, one can see [25]).

Definition 2.14 ([25]). A pair of functions (φ, ϕ) is said to belong to the class ℑ if they satisfy the following
conditions:

(a1) φ, ϕ : [0,∞) → [0,∞);

(a2) φ(t) ≤ ϕ(s) implies t ≤ s, for t, s ∈ [0,∞);
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(a3) For {tn} and {sn} sequences in [0,∞) such that limn→∞ tn = limn→∞ sn = a, if φ(tn) ≤ ϕ(sn) for any
n ∈ N , then a = 0.

Remark 2.15 ([25]). If (φ, ϕ) ∈ ℑ and φ(t) ≤ ϕ(t), then t = 0 (we can apply (a3) with tn = sn = t).

Example 2.16. The conditions (a1) − (a3) of the above definition are fulfilled for the functions φ, ϕ :
[0,∞) → [0,∞) defined by φ(t) = t and ϕ(t) = λt, for any λ < 1 and t ∈ [0,∞).

Example 2.17 ([25]). Let φ : [0,∞) → [0,∞) be a continuous and increasing function such that φ(t) = 0
if and only if t = 0 (these functions are known in the literature as altering distance functions). Let
ϕ : [0,∞) → [0,∞) be a non-decreasing function such that ϕ(t) = 0 if and only if t = 0 and suppose that
ϕ ≤ φ. Then the pair (φ,φ− ϕ) ∈ ℑ.
An interesting particular case is when φ is the identity mapping, φ = 1[0,∞) and ϕ : [0,∞) → [0,∞) is a
non-decreasing function such that ϕ(t) = 0 if and only if t = 0 and suppose that ϕ(t) ≤ t for any t ∈ [0,∞).

Example 2.18 ([25]). Let S be the class of functions defined by S = {α : [0,∞) → [0,∞) : α(tn) → 1 ⇒
tn → 0}. Let us consider the pairs of functions (1[0,∞), α1[0,∞)), where α ∈ S and α1[0,∞) is defined by
α1[0,∞)(t) = α(t)t, for t ∈ [0,∞). Then (1[0,∞), α1[0,∞)) ∈ ℑ.

Using some of these pairs of functions satisfying certain assumptions, Singh et al. [18] proved the
following fixed point theorem.

Theorem 2.19. Let (X,⪯) be a partially ordered set. Suppose that there exists an S−metric on X such
that (X,S) be a complete S−metric space. Let f : X → X be a non-decreasing mapping such that there
exists a pair of functions (φ, ϕ) ∈ ℑ satisfying

φ
(
S(fx, fx, fy)

)
≤ max

{
ϕ(S(x, x, y)), ϕ(

S(y, y, fy)[1 + S(x, x, fx)]

1 + S(fx, fx, fy)
)
}
, (2.1)

for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that
xn → u, then xn ⪯ u, for all n ∈ N . If there exists x0 ∈ X such that x0 ⪯ fx0, then f has a fixed point.

The aim of this work is to prove some common random fixed point and coupled random fixed point
theorems for a pair of weakly monotone random operators satisfying some contractive conditions of rational
type in the setting of partially ordered S− metric space. These results are some random versions and
extensions of results of Singh et al. [18]. Our results generalize the results of [17] and many of the well-
known results in the current literature. An example is also established to support the usability of our results.
The results are used to prove the existence and uniqueness of solution of some random functional equations.

3. Random fixed point theorems

First we introduce the notion of random weakly monotone property.

Definition 3.1. Let (X,⪯) be a partially ordered set and F,G : Ω ×X ×X → X be random mappings.
We say that a pair (F,G) has the mixed weakly monotone property on X if for any x, y ∈ X

x ⪯ F (ω, x, y), y ⪰ F (ω, y, x),

⇒ F (ω, x, y) ⪯ G(ω, F (ω, x, y), F (ω, y, x)), F (ω, y, x) ⪰ G(ω, F (ω, y, x), F (ω, x, y)),

and

x ⪯ G(ω, x, y), y ⪰ G(ω, y, x),

⇒ G(ω, x, y) ⪯ F (ω,G(ω, x, y), G(ω, y, x)), G(ω, y, x) ⪰ F (ω,G(ω, y, x), G(ω, x, y)).

Note that, may all the arguments like x, y depend also on ω, i.e., x = x(ω).
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Now we state our main results as follows:

Theorem 3.2. Let (X,⪯) be a partially ordered set, (X,S) be a complete separable S−metric space, (Ω,Σ)
be a measurable space and f, g : Ω×X → X be two mappings such that

(i) f(ω, .), g(ω, .) are continuous, for all ω ∈ Ω,

(ii) f(., x), g(., x) are measurable, for all x ∈ X,

(iii) The pair (f, g) satisfy the weakly monotone property,

(iv) There exists a pair of functions (φ, ϕ) ∈ ℑ, such that

φ
(
S(f(w, x), f(w, x), g(w, u))

)
≤ max

{
ϕ(S(x, x, u)), ϕ(

S(u, u, g(w, u))[1 + S(x, x, f(w, x))]

1 + S(f(w, x), f(w, x), g(w, u))
)
}
, (3.1)

for comparable elements x and u ∈ X.

If there exists a measurable mapping ξ0 : Ω → X with ξ0(ω) ⪯ f(ω, ξ0(ω)) or ξ0(ω) ⪯ g(ω, ξ0(ω)). Then f
and g have a common random fixed point in X.

Proof. Let θ = {ξ : Ω → X} be a family of measurable mappings. Since f(ω, ξ0(ω)) is measurable in its
first argument ω, then the mapping defined by ξ1(ω) = f(ω, ξ0(ω)) is measurable, that is, ξ1 ∈ θ . Similarly,
as g(ω, ξ1(ω)) is measurable, then there is ξ2 ∈ θ such that ξ2(ω) = g(ω, ξ1(ω)). Continuing this process, we
can construct sequence {ξn(ω)} in X with

ξ2n+1(ω) = f(ω, ξ2n(ω)),

ξ2n+2(ω) = g(ω, ξ2n+1(ω)), ∀n ∈ N ∪ {0}.
(3.2)

Step 1. First we use mathematical induction to prove that

ξn(ω) ⪯ ξn+1(ω), (3.3)

for all n ∈ N ∪ {0}. Let n = 0. By assumption we have ξ0(ω) ⪯ f(ω, ξ0(ω)) = ξ1(ω). Therefore, (3.3)
holds for n = 0. Suppose it is true for some fixed n ≥ 0. Thus, we have to discuss two cases

∗ If n is even, say n = 2m. That is,

ξ2m(ω) ⪯ ξ2m+1(ω) = f(ω, ξ2m(ω)).

Since f and g satisfy the weakly monotone property, then

ξn+1(ω) = ξ2m+1(ω) = f(ω, ξ2m(ω)) ⪯ g(ω, f(ω, ξ2m(ω))) = ξ2m+2(ω) = ξn+2(ω).

∗ If n is odd, say n = 2m+ 1. That is,

ξ2m+1(ω) ⪯ ξ2m+2(ω) = g(ω, ξ2m+1(ω)).

Again by weak monotonicity for f and g, we get

ξn+1(ω) = ξ2m+2(ω) = g(ω, ξ2m+1(ω)) ⪯ f(ω, g(ω, ξ2m+1(ω))) = ξ2m+3(ω) = ξn+2(ω).

Thus, (3.3) holds for all n.
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Step 2. In this step we prove limn→∞ S(ξn(ω), ξn+1(ω), ξn+1(ω)) = 0. By equations (3.1) - (3.3) we obtain

φ
(
S(f(w, ξ2n(ω)),f(w, ξ2n(ω)), g(w, ξ2n+1(ω)))

)
≤ max

{
ϕ
(
S(ξ2n(ω), ξ2n(ω), ξ2n+1(ω))

)
,

ϕ
(S(ξ2n+1(ω), ξ2n+1(ω), g(w, ξ2n+1(ω)))[1 + S(ξ2n(ω), ξ2n(ω), f(w, ξ2n(ω)))])

1 + S(f(w, ξ2n(ω)), f(w, ξ2n(ω)), g(w, ξ2n+1(ω)))

)}
φ
(
S(ξ2n+1(ω),ξ2n+1(ω), ξ2n+2(ω))

)
≤ max

{
ϕ
(
S(ξ2n(ω), ξ2n(ω), ξ2n+1(ω))

)
,

ϕ
(S(ξ2n+1(ω), ξ2n+1(ω), ξ2n+2(ω))[1 + S(ξ2n(ω), ξ2n(ω), ξ2n+1(ω))])

1 + S(ξ2n+1(ω), ξ2n+1(ω), ξ2n+2(ω))

)}
.

For simplicity, we denote Sn = S(ξn(ω), ξn(ω), ξn+1(ω)).

φ(S2n+1) ≤ max{ϕ(S2n), ϕ(
S2n+1[1 + S2n]

1 + S2n+1
)}. (3.4)

Now, we can distinguish two cases.

∗ If max{ϕ(S2n), ϕ(
S2n+1[1+S2n]

1+S2n+1
)} = ϕ(S2n+1[1+S2n]

1+S2n+1
), then Eq. (3.4) and property (c2) of (φ, ϕ) yield

φ(S2n+1) ≤ ϕ(
S2n+1[1 + S2n]

1 + S2n+1
)

⇒ S2n+1 ≤
S2n+1[1 + S2n]

1 + S2n+1

⇒ S2n+1 ≤ S2n.

∗ Otherwise, max{ϕ(S2n), ϕ(
S2n+1[1+S2n]

1+S2n+1
)} = ϕ(S2n), then we have S2n+1 ≤ S2n.

Hence, in both cases we obtain that
S2n+1 ≤ S2n. (3.5)

Interchanging the role of mappings f and g and using (3.1) - (3.3), we get

φ
(
S(g(w, ξ2n−1(ω)),g(w, ξ2n−1(ω)), f(w, ξ2n(ω)))

)
≤ max

{
ϕ
(
S(ξ2n−1(ω), ξ2n−1(ω), ξ2n(ω))

)
,

ϕ
(S(ξ2n(ω), ξ2n(ω), f(w, ξ2n(ω)))[1 + S(ξ2n−1(ω), ξ2n−1(ω), g(w, ξ2n−1(ω)))])

1 + S(g(w, ξ2n−1(ω)), g(w, ξ2n−1(ω)), f(w, ξ2n(ω)))

)}
φ
(
S(ξ2n(ω),ξ2n(ω), ξ2n+1(ω))

)
≤ max

{
ϕ
(
S(ξ2n−1(ω), ξ2n−1(ω), ξ2n(ω))

)
,

ϕ
(S(ξ2n(ω), ξ2n(ω), ξ2n+1(ω))[1 + S(ξ2n−1(ω), ξ2n−1(ω), ξ2n(ω))])

1 + S(ξ2n(ω), ξ2n(ω), ξ2n+1(ω))

)}
φ(S2n) ≤ max{ϕ(S2n−1), ϕ(

S2n[1 + S2n−1]

1 + S2n
)},

which implies that
S2n ≤ S2n−1. (3.6)

From (3.5)and (3.6) we conclude that {Sn} is a decreasing sequence of non-negative real numbers and
is bounded below, then there is r(ω) ≥ 0 such that

lim
n→∞

Sn = r(ω).

Letting n → ∞ in Eq. (3.4) and using property (c3) of (φ, ϕ) imply that r(ω) = 0, ∀ω. Therefore,

lim
n→∞

Sn = 0. (3.7)
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Step 3. Now we show that {ξn(ω)} is a Cauchy sequence in X for every ω ∈ Ω, it is sufficient to prove that
{ξ2n(ω)} is a Cauchy sequence. Suppose the contrary, then there exist ϵ(ω) > 0 for which we can find
two sub-sequences of positive integers {mk} and {nk} such that mk is the smallest integer with

mk > nk > k, S(ξ2nk
, ξ2nk

, ξ2mk
) ≥ ϵ(ω), (3.8)

and
S(ξ2nk

, ξ2nk
, ξ2mk−2) < ϵ(ω). (3.9)

By Lemmas 2.3, 2.4 and using equations (3.8), (3.9), we have

ϵ(ω) ≤ S(ξ2nk
(ω), ξ2nk

(ω), ξ2mk
(ω)) = S(ξ2mk

(ω), ξ2mk
(ω), ξ2nk

(ω))

≤ 2S(ξ2mk
(ω), ξ2mk

(ω), ξ2mk−2(ω)) + S(ξ2mk−2(ω), ξ2mk−2(ω), ξ2nk
(ω))

≤ 2[2S(ξ2mk
(ω), ξ2mk

(ω), ξ2mk−1(ω)) + S(ξ2mk−1(ω), ξ2mk−1(ω), ξ2mk−2(ω))]

+ S(ξ2nk
(ω), ξ2nk

(ω), ξ2mk−2(ω))

< 2(2S2mk−1 + S2mk−2) + ϵ(ω).

On Letting the limit as k → ∞ in the above inequality and using (3.7), we get

lim
k→∞

S(ξ2nk
, ξ2nk

, ξ2mk
) = ϵ(ω). (3.10)

Also we have,

S(ξ2nk+1(ω),ξ2nk+1(ω), ξ2mk+2(ω)) ≤ 2S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2nk
(ω)) + S(ξ2mk+2(ω), ξ2mk+2(ω), ξ2nk

(ω))

≤ 2S2nk
+ 2S(ξ2mk+2(ω), ξ2mk+2(ω), ξ2mk+1(ω)) + S(ξ2mk+1(ω), ξ2mk+1(ω), ξ2nk

(ω))

≤ 2S2nk
+ 2S2mk+1 + 2S2mk

+ S(ξ2nk
(ω), ξ2nk

(ω), ξ2mk
(ω)),

and

S(ξ2nk
(ω), ξ2nk

(ω), ξ2mk
(ω)) ≤ 2S2nk

+ 2S2mk
+ 2S2mk+1 + S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω)).

That is,

| S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω))− S(ξ2nk
(ω), ξ2nk

(ω), ξ2mk
(ω)) |≤ 2S2nk

+ 2S2mk
+ 2S2mk+1.

On making k → ∞ above, we obtain that

lim
k→∞

S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω)) = ϵ(ω). (3.11)

By a similar way, we obtain

| S(ξ2nk
(ω), ξ2nk

(ω), ξ2mk+1(ω))− S(ξ2nk
(ω), ξ2nk

(ω), ξ2mk
(ω)) |≤ 2S2mk

.

Thus,

lim
k→∞

S(ξ2nk
(ω), ξ2nk

(ω), ξ2mk+1(ω)) = ϵ(ω). (3.12)

Since nk < mk and ξ2nk
≤ ξ2mk+1, then by contractive condition (3.1), we get

φ
(
S(f(w, ξ2nk

(ω)),f(w, ξ2nk
(ω)), g(w, ξ2mk+1(ω)))

)
= φ

(
S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω))

)
≤ max

{
ϕ
(
S(ξ2nk

(ω), ξ2nk
(ω), ξ2mk+1(ω))

)
,

ϕ
(S(ξ2mk+1(ω), ξ2mk+1(ω), ξ2mk+2(ω))[1 + S(ξ2nk

(ω), ξ2nk
(ω), ξ2nk+1(ω))]

1 + S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω))

)}
.

Now we have to discuss two cases
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∗ If

max

{
ϕ
(
S(ξ2nk

(ω), ξ2nk
(ω), ξ2mk+1(ω))

)
, ϕ

( S2mk+1[1 + S2nk
]

1 + S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω))

)}
= ϕ

(
S(ξ2nk

(ω), ξ2nk
(ω), ξ2mk+1(ω))

)
,

then

φ
(
S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω))

)
≤ ϕ

(
S(ξ2nk

(ω), ξ2nk
(ω), ξ2mk+1(ω))

)
.

But since (φ, ϕ) ∈ ξ and by (3.11), (3.12), we get ϵ(ω) = 0 which is a contradiction.

∗ If

max

{
ϕ
(
S(ξ2nk

(ω), ξ2nk
(ω), ξ2mk+1(ω))

)
, ϕ

( S2mk+1[1 + S2nk
]

1 + S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω))

)}
= ϕ

( S2mk+1[1 + S2nk
]

1 + S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω))

)
,

then

φ
(
S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω))

)
≤ ϕ

( S2mk+1[1 + S2nk
]

1 + S(ξ2nk+1(ω), ξ2nk+1(ω), ξ2mk+2(ω))

)
.

Letting k → ∞ in the last inequality and using (3.7) we get ϵ(ω) ≤ 0 which is a contradiction.
Then our claim follows.

Since X is complete, then there exists ξ ∈ θ such that

lim
k→∞

ξn(ω) = ξ(ω).

Step 4. Here we show the existence of the fixed point. Since f(ω, .) and g(ω, .) are continuous for all ω ∈ Ω,
then

ξ(ω) = lim
k→∞

ξ2n+1(ω) = f(ω, lim
k→∞

ξ2n(ω)) = f(ω, ξ(ω)),

and

ξ(ω) = lim
k→∞

ξ2n+2(ω) = g(ω, lim
k→∞

ξ2n+1(ω)) = g(ω, ξ(ω)).

So we have

ξ(ω) = f(ω, ξ(ω)) = g(ω, ξ(ω)). (3.13)

That is ξ(ω) ∈ X is a common fixed point for f and g.

From Theorem 3.2 we obtain the following corollaries.

Corollary 3.3. Let (X,⪯) be a partially ordered set, (X,S) be a complete separable S−metric space, (Ω,Σ)
be a measurable space and f, g : Ω × X → X be two mappings such that for comparable elements x and u
∈ X, we have

(i) f(ω, .), g(ω, .) are continuous, for all ω ∈ Ω,

(ii) f(., x), g(., x) are measurable, for all x ∈ X,

(iii) The pair (f, g) satisfy the weakly monotone property,
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(iv) There exist α, β > 0 with α+ β < 1 such that

S(f(w, x), f(w, x), g(w, u)) ≤ α
S(u, u, g(w, u))[1 + S(x, x, f(w, x))]

1 + S(f(w, x), f(w, x), g(w, u))
+ βS(x, x, u). (3.14)

If there exists a measurable mapping ξ0 : Ω → X with ξ0(ω) ⪯ f(ω, ξ0(ω)) or ξ0(ω) ⪯ g(ω, ξ0(ω)). Then f
and g have a common random fixed point in X.

Proof. Since

S(f(w, x), f(w, x), g(w, u)) ≤ α
S(u, u, g(w, u))[1 + S(x, x, f(w, x))]

1 + S(f(w, x), f(w, x), g(w, u))
+ βS(x, x, u)

≤ (α+ β)max
{
S(x, x, u),

S(u, u, g(w, u))[1 + S(x, x, f(w, x))]

1 + S(f(w, x), f(w, x), g(w, u))

}
≤ max

{
(α+ β)S(x, x, u), (α+ β)

S(u, u, g(w, u))[1 + S(x, x, f(w, x))]

1 + S(f(w, x), f(w, x), g(w, u))

}
.

This condition is a particular case of the contractive condition appearing in Theorem 3.2 with the pair of
functions(φ, ϕ) ∈ ℑ, given by φ(t) = t and ϕ(t) = (α+ β)t, (see Example 2.16).

Corollary 3.4. Let (X,⪯) be a partially ordered set, (X,S) be a complete separable S−metric space, (Ω,Σ)
be a measurable space and f, g : Ω × X → X be two mappings such that for comparable elements x and u
∈ X, we have

(i) f(ω, .), g(ω, .) are continuous, for all ω ∈ Ω,

(ii) f(., x), g(., x) are measurable, for all x ∈ X,

(iii) The pair (f, g) satisfy the weakly monotone property,

(iv) There exist two functions φ, ϕ : [0,∞) → [0,∞) with the same conditions in Example 2.17 and

φ
(
S(f(w, x), f(w, x), g(w, u))

)
≤ max

{
φ(S(x, x, u))− ϕ(S(x, x, u)),

φ(
S(u, u, g(w, u))[1 + S(x, x, f(w, x))]

1 + S(f(w, x), f(w, x), g(w, u))
)− ϕ(

S(u, u, g(w, u))[1 + S(x, x, f(w, x))]

1 + S(f(w, x), f(w, x), g(w, u))
)
}
,

(3.15)

If there exists a measurable mapping ξ0 : Ω → X with ξ0(ω) ⪯ f(ω, ξ0(ω)) or ξ0(ω) ⪯ g(ω, ξ0(ω)). Then f
and g have a common random fixed point in X.

Note that, Condition (3.15) is a particular case of the contractive condition appearing in Theorem 3.2
with the pair of functions(φ,φ− ϕ) ∈ ℑ, (see Example 2.17).

Corollary 3.5. Let (X,⪯) be a partially ordered set, (X,S) be a complete separable S−metric space, (Ω,Σ)
be a measurable space and f, g : Ω × X → X be two mappings such that for comparable elements x and u
∈ X, we have

(i) f(ω, .), g(ω, .) are continuous, for all ω ∈ Ω,

(ii) f(., x), g(., x) are measurable, for all x ∈ X,

(iii) The pair (f, g) satisfy the weakly monotone property,

(iv) There exists α ∈ S, such that

S(f(w, x), f(w, x),g(w, u)) ≤ max
{
α(S(x, x, u))S(x, x, u),

α(
S(u, u, g(w, u))[1 + S(x, x, f(w, x))]

1 + S(f(w, x), f(w, x), g(w, u))
)
S(u, u, g(w, u))[1 + S(x, x, f(w, x))]

1 + S(f(w, x), f(w, x), g(w, u))

}
,

(3.16)
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If there exists a measurable mapping ξ0 : Ω → X with ξ0(ω) ⪯ f(ω, ξ0(ω)) or ξ0(ω) ⪯ g(ω, ξ0(ω)). Then f
and g have a common random fixed point in X.

Note that, Condition (3.16) is a particular case of the contractive condition appearing in Theorem 3.2
with the pair of functions(φ, ϕ) ∈ ℑ, given by φ = 1[0,∞) and ϕ = α[0,∞), (see Example 2.18).

4. Coupled random fixed point theorems

Lemma 4.1. If (X,S) is a separable S− metric space, then B equals the σ− algebra generated by the open
balls of X, where B is the Borel σ− algebra that contains all open (closed) subsets of X.

Proof. Denote A := σ− algebra generated by the open balls of X. Clearly, A ⊂ B. Let D and U be
countable dense subset and open subset of X, respectively. Since U is open, then for any x ∈ U there
exist r > 0 such that B(x, r) ⊂ U . Also since D is dense in X, then there exist yx ∈ D such that
yx ∈ B(x, r3) ⇒ x ∈ B(yx,

r
2) ⊂ U . Set rx = r

2 , we have

U = ∪{B(yx, rx) : x ∈ U},

which is a countable union of elements in A. Therefore U ∈ A. Hence A = B.

Lemma 4.2. Consider that S : Z × Z → R+, where Z = X2, defined by

S((x1, y1), (x1, y1), (x2, y2)) = S(x1, x1, x2) + S(y1, y1, y2).

Then S is an S− metric on Z and if (X,S) is separable then (Z, S) is separable. Moreover, if (X,S) is
complete then (Z, S) is complete, too.

Proof. Clearly S(z1, z2, z3) ≥ 0 for all z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) ∈ Z and

S(z1, z2, z3) = 0 ⇔ S(x1, x2, x3) = S(y1, y2, y3) = 0

⇔ x1 = x2 = x3 and y1 = y2 = y3 ⇔ z1 = z2 = z3.

Also, for z1, z2, z3, (a, b) ∈ Z we have

S(z1, z2, z3) = S(x1, x2, x3) + S(y1, y2, y3)

≤ S(a, x2, x3) + S(a, a, x1) + S(b, y2, y3) + S(b, b, y1)

≤ S((a, b), (x2, y2), (x3, y3)) + S((a, b), (a, b), (x1, y1))

≤ S((a, b), z2, z3) + S((a, b), (a, b), z1).

Thus S is an S− metric on Z. Furthermore, if (X,S) is separable, then X has a countable dense subset A.
Now we show that A2 is countable dense subset in Z. Since A is dense in X then for x ∈ X and r/2 > 0
there is a ∈ A such that S(x, x, a) < r

2 and for y ∈ X and r/2 > 0 there is b ∈ A such that S(y, y, b) < r
2 .

Hence, for any z = (x, y) ∈ Z and r > 0 there exist (a, b) ∈ A2 such that

S(z, z, (a, b)) = S(x, x, a) + S(y, y, b) < r.

Then A2 is dense in Z and (Z, S) is separable S−metric.
Finally, we prove that (Z, S) is complete if (X,S) is complete. Let {zn} be Cauchy sequence in (Z, S),
then we have for all ϵ > 0 there exists n0 ∈ N such that S(zn, zn, zm) < ϵ for all n > m > n0. Say
zn = (xn, yn) ∀n, then S(xn, xn, xm) < ϵ and S(yn, yn, ym) < ϵ, that is, {xn} and {yn} are Cauchy sequences
in X. Since X is complete then there exist x, y ∈ X such that xn → x and yn → y as n → ∞. Then we
have zn → (x, y) ∈ Z. Hence, (Z, S) is complete.
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Lemma 4.3. Let (X,S) be separable S− metric space. The mapping ζ : Ω → Z defined by ζ(ω) =(
ξ(ω), η(ω)

)
is measurable, whenever ξ, η : Ω → X are measurable mappings.

Proof. Since ζ must be measurable iff ζ−1(U) is measurable for each open set U in Z. By Lemmas 4.1 and
4.2 we can find z = (x, y) ∈ X2 and r > 0 such that U = B(z, r).

ζ−1(U) = {ω : ζ(ω) ∈ B(z, r)}
= {ω : S(z, z, ζ(ω)) < r}
= {ω : S

(
(x, y), (x, y), (ξ(ω), η(ω))

)
< r}

= {ω : S(x, x, ξ(ω)) + S(y, y, η(ω)) < r}

= {ω : S(x, x, ξ(ω)) <
r

2
} ∩ {ω : S(y, y, η(ω)) <

r

2
} ∈ Σ.

Hence ζ is measurable mapping.

Lemma 4.4. Let (X,S) be separable S− metric space and F : Ω×X ×X → X be Carathéodory function
(that is, it is measurable in ω for each x, y ∈ X and continuous in x and y for each ω ∈ Ω). Then the
function T : Ω× Z → Z defined by T (ω, (x, y)) =

(
F (ω, x, y), F (ω, y, x)

)
is also Carathéodory function.

Proof. We shall show that T (ω, z) is measurable in ω ∈ Ω and continuous in z ∈ Z. By Lemmas 4.1 and
4.2 we can find z0 = (x0, y0) ∈ Z and r > 0 such that U = B(z0, r) for any open set U ⊂ Z.

T−1
z (U) = {ω : Tz(ω) = T (ω, z) ∈ B(z0, r)}

= {ω : S(z0, z0, Tz(ω)) < r}
= {ω : S

(
(x0, y0), (x0, y0), (F (ω, x, y), F (ω, y, x))

)
< r}

= {ω : S(x0, x0, F (ω, x, y)) + S(y0, y0, F (ω, y, x)) < r}

= {ω : S(x0, x0, F (ω, x, y)) <
r

2
} ∩ {ω : S(y0, y0, F (ω, y, x)) <

r

2
}

= {ω : F (ω, x, y) ∈ B(x0,
r

2
)} ∩ {ω : F (ω, y, x) ∈ B(y0,

r

2
)} ∈ Σ.

Hence T is measurable in ω for all z ∈ Z. To prove that T is continuous we have to prove that Tω(zn) → Tω(z)
for any convergent sequence zn → z in Z. Consider zn = (xn, yn) for all n ∈ N . Since zn → z, say there
exist x, y ∈ X with z = (x, y), xn → x and yn → y. From the continuity of F in x, y ∈ X we have

lim
n→∞

Tω(zn) =
(
lim
n→∞

Fω(xn, yn), lim
n→∞

Fω(yn, xn)
)
=

(
Fω(x, y), Fω(y, x)

)
= Tω(z).

This finishes our proof.

Remark 4.5. Let (X,⪯) be a partially ordered set. We can endow the product space X×X with the partial
order ⪯p given by

(x, y) ⪯p (u, v) ⇔ x ⪯ u, y ⪰ v.

Theorem 4.6. Let (X,⪯) be a partially ordered set, (X,S) be a complete separable S−metric space, (Ω,Σ)
be a measurable space and F,G : Ω×X ×X → X be two mappings such that

(i) F (ω, .), G(ω, .) are continuous, for all ω ∈ Ω,

(ii) F (., v), G(., v) are measurable, for all v ∈ X ×X,

(iii) The pair (F,G) satisfy the weakly monotone property,
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(iv) There exists a pair of functions (φ, ϕ) ∈ ℑ, such that

φ
(
S(F (w, x, y), F (w, x, y), G(w, u, v)) + S(F (w, y, x), F (w, y, x), G(w, v, u))

)
≤ max

{
ϕ(S(x, x, u) + S(y, y, v)),

ϕ

(
[S(u, u,G(w, u, v)) + S(v, v,G(w, v, u))][1 + S(x, x, F (w, x, y)) + S(y, y, F (w, y, x))]

1 + S(F (w, x, y), F (w, x, y), G(w, u, v)) + S(F (w, y, x), F (w, y, x), G(w, v, u))

)}
,

(4.1)

for comparable elements (x, y) and (u, v) ∈ X ×X.

If there exist measurable mappings ξ0, η0 : Ω → X with ξ0(ω) ⪯ F (or G)(ω, ξ0(ω), η0(ω)) and η0(ω) ⪯
F (or G)(ω, η0(ω), ξ0(ω)). Then F and G have a coupled common random fixed point in X.

Proof. Consider the functional S : X2 ×X2 → R+, defined by

S(z1, z2, z3) = S(x1, x2, x3) + S(y1, y2, y3), ∀z1 = (x1, y1), z2 = (x2, y2)andz3 = (x3, y3) ∈ X2.

By Lemma 4.2, (X2, S) is a complete separable S− metric space.
Define T1, T2 : Ω×X2 → X2 as

T1(ω, (x, y)) =
(
F (ω, x, y), F (ω, y, x)

)
,

T2(ω, (x, y)) =
(
G(ω, x, y), G(ω, y, x)

)
.

By Lemma 4.4, T1 and T2 are measurable in ω ∈ Ω and continuous in (x, y) ∈ X2. Moreover, since F and G
have mixed weakly monotone property with respect to ”⪯”, then T1 and T2 have weakly monotone property
with respect to ”⪯p”, i.e.,

(x, y) ∈ X2, (x, y) ⪯p T1(ω, (x, y)) ⇒ T1(ω, (x, y)) ⪯p T2(ω, T1(ω, (x, y))).

Also, we define a sequence of measurable mappings ζn : Ω → X2 by ζn(ω) = (ξn(ω), ηn(ω)) for all n ∈ N∪{0}.
Since ξ0(ω) ⪯ F (ω, ξ0(ω), η0(ω)) and η0(ω) ⪰ F (ω, η0(ω), ξ0(ω)), then we have that

(ξ0(ω), η0(ω)) ⪯p

(
F (ω, ξ0(ω), η0(ω)), F (ω, η0(ω), ξ0(ω))

)
ζ0(ω) ⪯p T1(ω, (ξ0(ω), η0(ω))) = T1(ω, ζ0(ω)).

Finally the contraction condition implies that

φ
(
S(T1(w, (x, y)), T1(w, (x, y)), T2(w, (u, v)))

)
≤ max

{
ϕ
(
S((x, y), (x, y), (u, v))

)
,

ϕ

(
S((u, v), (u, v), T2(w, (u, v)))[1 + S((x, y), (x, y), T1(w, (x, y)))]

1 + S(T1(w, (x, y)), T1(w, (x, y)), T2(w, (u, v)))

)}
.

Therefore, now we can apply the conclusion of Theorem 2.19 and get that T1 and T2 have at least one
random fixed point in X2. That is, there exists a measurable mapping ζ : Ω → X2 such that

ζ(ω) = T1(ω, ζ(ω)) = T2(ω, ζ(ω)).

This implies
ξ(ω) = F (ω, ξ(ω), η(ω)) = G(ω, ξ(ω), η(ω)), (4.2)

and
η(ω) = F (ω, η(ω), ξ(ω)) = G(ω, η(ω), ξ(ω)). (4.3)

That is, F and G have a coupled common random fixed point in X.
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Now we construct an example to support our results.

Example 4.7. Let X = [0, π4 ] be equipped with the usual order ” ≤ ” and S−metric defined by

S(x, y, z) =
1

2

[
|x− z|+ |y − z|

]
, ∀ x, y, z ∈ X.

Let Ω = [0, 1] and Σ be the sigma algebra of all Lebesgue measurable subsets of Ω. Define the following
partial order on X2:

(x, y) ⪯ (u, v) ⇔ x ≤ u and y ≥ v.

Consider the mappings F,G : Ω×X ×X → X defined by

F (ω, x, y) = G(ω, x, y) =
1− ω2

10
[sinx+ sin y], ∀ x, y ∈ X and ω ∈ X.

Define the functions φ, ϕ : [0,∞) → [0,∞) as follows

φ(t) =

√
1

12
+

5t

12
and ϕ(t) =

√
1

12
+

3t

12
, ∀ t ∈ [0,∞).

Now we will check the contraction condition of Theorem 3.2 is satisfied for comparable elements (x, y) and
(u, v) ∈ X2.

S(F (w, x, y), F (w, x, y), G(w, u, v)) + S(F (w, y, x), F (w, y, x), G(w, v, u))

=
∣∣F (w, x, y)−G(w, u, v)

∣∣+ ∣∣F (w, y, x)−G(w, v, u)
∣∣

=
1− ω2

5

∣∣(sinx− sinu) + (sin y − sin v)
∣∣,

φ
(
S(F (w, x, y), F (w, x, y), G(w, u, v)) + S(F (w, y, x), F (w, y, x), G(w, v, u))

)
=

√
1

12
+

1− ω2

12
|(sinx− sinu) + (sin y − sin v)|

≤
√

1

12
+

1

12

[∣∣(sinx− sinu)
∣∣+ ∣∣(sin y − sin v)

∣∣]
≤

√
1

12
+

3

12

[∣∣(sinx− sinu)
∣∣+ ∣∣(sin y − sin v)

∣∣]
≤ ϕ(S(x, x, u) + S(y, y, v))

≤ max

{
ϕ(S(x, x, u) + S(y, y, v)),

ϕ

(
[S(u, u,G(w, u, v)) + S(v, v,G(w, v, u))][1 + S(x, x, F (w, x, y)) + S(y, y, F (w, y, x))]

1 + S(F (w, x, y), F (w, x, y), G(w, u, v)) + S(F (w, y, x), F (w, y, x), G(w, v, u))

)}
.

It is obvious that other hypothesis of Theorem 3.2 are satisfied. We deduce that F and G have a coupled
random fixed point ξ, η : Ω → X defined as

ξ(ω) = η(ω) = 0, ∀ ω ∈ Ω.

5. Application

Now, we introduce the existence and uniqueness solution for a class of random functional equations by
using Theorem 3.2.
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Let A,B be Banach spaces, D ⊂ A, E ⊂ B and R be the field of real numbers.
Let X = B(D) be the set of all bounded real valued functions on D with S− metric defined by

S
(
f(ω, x(ω)), h(ω, x(ω)), t(ω, x(ω))

)
= sup

(ω,x)∈Ω×D

∣∣f(ω, x(ω))− h(ω, x(ω))
∣∣

+ sup
(ω,x)∈Ω×D

∣∣f(ω, x(ω)) + t(ω, x(ω)− 2h(ω, x(ω))
∣∣, (5.1)

where, f, h, t : Ω × A → R be bounded i.e., f, h, t ∈ X. Then (X,S) is complete S− metric space. Let
(Ω,Σ) be a given probability space. we will study the existence and uniqueness of a solution of the following
functional equation:-

P
(
x(ω)

)
= sup

y∈E

[
g(ω, x(ω), y(ω)) +G(x(ω), y(ω), P (τ(x(ω), y(ω))))

]
, (5.2)

where, x : Ω → D and y : Ω → E represent the random state and decision vector, respectively, P : D → R
is bounded, i.e., P ∈ X, τ : D × E → D represents the optimal return function with initial state.
Also, g : Ω×D × E → R, G : D × E ×R → R are bonded functions.
Let T : Ω×X → X be mapping defined as

T (ω, h(x(ω))) = sup
y∈E

[
g(ω, x(ω), y(ω)) +G(x(ω), y(ω), h(τ(x(ω), y(ω))))

]
, (5.3)

where, h : D → R, is in X.

Theorem 5.1. Assume that for every (x, y) ∈ D × E, h, k : D → R and ω ∈ Ω such that∣∣G(x(ω),y(ω), h(τ(x(ω), y(ω))))−G(x(ω), y(ω), k(τ(x(ω), y(ω))))
∣∣ ≤

α(w)
S(k(x(ω)), k(x(ω)), T (ω, k(x(ω)))[1 + S(h(x(ω)), h(x(ω)), T (ω, h(x(ω))))]

1 + S(T (ω, h(x(ω))), T (ω, h(x(ω))), T (ω, k(x(ω))))

+ β(ω)S(h(x(ω)), h(x(ω)), k(x(ω)))),

(5.4)

where α, β : Ω → [0,∞) with α(ω) + β(ω) < 1.
Then the functional equation (5.2) has a unique solution in X.

Proof. Let µ be positive real number and for any x(ω) ∈ D, y1(ω), y2(ω) ∈ E, from Equation (5.3) we have:

T (ω, h(x(ω))) ≤ g(ω, x(ω), y1(ω)) +G(x(ω), y1(ω), h(τ(x(ω), y1(ω)))) + µ

T (ω, k(x(ω))) ≤ g(ω, x(ω), y2(ω)) +G(x(ω), y2(ω), k(τ(x(ω), y2(ω)))) + µ.
(5.5)

On the other hand from the definition of T and equation (5.3)

T (ω, h(x(ω))) ≥ g(ω, x(ω), y2(ω)) +G(x(ω), y2(ω), h(τ(x(ω), y2(ω))))

T (ω, k(x(ω))) ≥ g(ω, x(ω), y1(ω)) +G(x(ω), y1(ω), k(τ(x(ω), y1(ω)))).
(5.6)

From (5.5) and (5.6) we have

T (ω, h(x(ω)))− T (ω, k(x(ω))) < G(x(ω), y1(ω), h(τ(x(ω), y1(ω))))

−G(x(ω), y1(ω), k(τ(x(ω), y1(ω)))) + µ
(5.7)

and

T (ω, k(x(ω)))− T (ω, h(x(ω))) < G(x(ω), y2(ω), k(τ(x(ω), y2(ω))))

−G(x(ω), y2(ω), h(τ(x(ω), y2(ω)))) + µ.
(5.8)
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From (5.1), (5.4), (5.7) and (5.8) we have

S(T (ω, h(x(ω))), T (ω, h(x(ω))), T (ω, k(x(ω)))) = sup
ω∈Ω

∣∣T (ω, k(x(ω)))− T (ω, h(x(ω)))
∣∣ ≤

α(w)
S(k(x(ω)), k(x(ω)), T (ω, k(x(ω)))[1 + S(h(x(ω)), h(x(ω)), T (ω, h(x(ω))))]

1 + S(T (ω, h(x(ω))), T (ω, h(x(ω))), T (ω, k(x(ω))))

+ β(ω)S(h(x(ω)), h(x(ω)), k(x(ω)))).

(5.9)

Therefore all conditions of Theorem 3.2 are satisfied. Hence the random functional equation (5.2) has a
solution.
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