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1 Introduction
In various branches of pure and applied mathematics, special functions have become es-
sential tools for scientists and engineers. Among these, the gamma and beta functions are
particularly notable. The gamma function, first introduced by Swiss mathematician Leon-
hard Euler, appears in numerous mathematical contexts, including Riemann’s zeta func-
tion, asymptotic series, definite integrals, hypergeometric series, and number theory. Due
to its importance, the gamma function has been studied by several renowned mathemati-
cians, such as Adrien-Marie Legendre (1752–1833), Carl Friedrich Gauss (1777–1855),
Christoph Gudermann (1798–1852), and Joseph Liouville (1809–1882). The gamma func-
tion is classified as a special transcendental function.

The gamma and beta functions are fundamental in various fields of mathematics and
applied sciences, serving as essential tools in probability theory, statistics, and mathemat-
ical modeling. Their applications are extensive, ranging from statistical distributions to
solutions of differential equations.

The gamma function generalizes the factorial function and is crucial in defining various
probability distributions, including the gamma and beta distributions, which are widely
used in statistics for modeling continuous random variables. For instance, the noncentral
gamma distribution plays a significant role in radar detection and communications, high-
lighting the gamma function’s relevance in practical applications (Segura [1]). Addition-
ally, the beta function is pivotal in Bayesian statistics and is often used to model random
variables that are constrained to an interval (Segura [1]).
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In mathematical modeling, the gamma and beta functions are used to solve fractional
differential equations, which are essential in physics and engineering. Recent studies have
introduced generalized forms of these functions, further extending their applicability in
fractional calculus (Ata and Kıymaz [2], Matouk [3]). For example, the generalized gamma
function has been applied to model biological systems, demonstrating its interdisciplinary
significance (Matouk [3]).

The applications of the gamma and beta functions extend to matrix theory, where ma-
trix versions of these functions have been developed. These extensions facilitate the study
of special matrix functions and their applications in statistics and differential equations
(Zou et al. [4], He et al. [5]). The introduction of k-gamma and k-beta functions has fur-
ther broadened the scope of their applications, particularly in high-energy physics and
mathematical analysis (Khammash et al. [6], Tassaddiq [7]).

Moreover, the gamma function’s role in asymptotic analysis and integral representa-
tions is noteworthy. It has been used to derive series representations for the incomplete
gamma function, which are crucial for evaluating integrals in various mathematical con-
texts (Amore [8]). The analytical properties of the gamma function also contribute to the
evaluation of integrals involving Laplace and Fourier transforms, underscoring its impor-
tance in theoretical and applied mathematics (Iddrisu and Tetteh [9], Choi and Srivastava
[10]).

Due to the variety of applications of beta and gamma functions, many researchers have
derived their representations and properties. Diaz et al. [11–13] provided integral rep-
resentations of k-beta and k-gamma functions and derived their properties. They also
provided a representation for the Pochhammer k-symbol. After Diaz et al. [11–13], many
other researchers, including Kokologiannaki [14, 15], Krasiniqi [16], Mansour [17] and
Mubeen et al. [18], added their contributions, making these functions more interesting
and useful. Mubeen et al. [19] discussed a representation of the k-beta and k-gamma func-
tions. Golub [20] also contributed to this framework. Mubeen and Habibullah [21] pro-
vided integral representations of some generalized confluent hypergeometric k-function
using properties of the Pochhammer k-symbol, k-beta and k-gamma functions. Mubeen
et al. [22] studied other extensions of the k-beta and k-gamma functions involving a con-
fluent hypergeometric k-function. Mubeen [23] introduced a k-analogue of Kommer’s for-
mula and evaluated some useful results using hypergeometric k-functions. Rehman et al.
[24] introduced a beta k-function for several variables. They also extended the beta k-
function for n variables. Mubeen and Habibullah [25] defined the k fractional integration
and gave its application.

Inequalities involving extended gamma or beta functions have not been studied much.
The papers known to us are as follows. Rehman et al. [26, 27] derived several inequalities
involving k-beta and k-gamma functions. Raissouli and Soubhy [28] studied some inequal-
ities involving two generalized beta functions in n variables. This note presents the most
general inequalities involving extended beta and gamma functions. By expanding on pre-
vious research and offering fresh perspectives, we uncover numerous new insights and
advancements in the field. Our study covers various inequality categories, including in-
tegral inequalities, functional inequalities, and those designed for specific parameters or
functions. Through a comprehensive comparison of our results with established findings,
we effectively emphasize the originality and importance of our contributions. Our goal is
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to enrich the existing knowledge in this area and further the understanding and practical
applications of extended beta and gamma functions.

The k-beta and k-gamma functions have the following standard representations [19]

βk(φ,ψ) =
1
k

1∫

0

m
φ
k –1(1 – m)

ψ
k –1dm, where Re(φ) > 0, Re(ψ) > 0

and

�k(φ) =
∞∫

0

mφ–1e– mk
k dm, where Re(φ) > 0, k > 0.

Some other extensions of extended k-beta and k-gamma functions described in [14–18]
are

βk(φ,ψ ; a) =
1
k

1∫

0

m
φ
k –1(1 – m)

ψ
k –1e– ak

km(1–m) dm,

βk(φ,ψ ; a, b) =
1
k

1∫

0

m
φ
k –1e

–ak
m (1 – m)

ψ
k –1e– bk

k(1–m) dm (1)

and

�a,k(φ) =
∞∫

0

mφ–1e– mk
k e– ak

kmk dm, (2)

where Re(φ) > 0 and Re(ψ) > 0. The generalized beta and gamma functions can be ex-
pressed as [22]

β
(an ,bn)

a,k (φ,ψ) =
1
k

1∫

0

m
φ
k –1(1 – m)

ψ
k –1

1F1,k

(
an, bn; –

ak

km(1 – m)

)
dm (3)

and

�
(an ,bn)

k (φ, a) =
∞∫

o

mφ–1
1F1,k

(
an; bn; –

mk

k
–

ak

kmk

)
dm, where a, b, > 0. (4)

where 1F1,k is the confluent hypergeometric function [21] defined by

1F1,k (an, bn; l) =
∞∑

m=0

(an)m,k

(bn)m,k
· lm

m!
. (5)

If an > 0, bn – an > 0 and k > 0, then we have the following integral representation

1F1,k (an, bn; l) =
1
k

� (bn)

� (an)� (bn – an)

1∫

0

uan–1(1 – u)bn–an–1eludu. (6)
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By making the substitution, we obtain

1F1,k (an; bn; l) = el
1F1,k (bn – an; b; –l) . (7)

Remark 1.1 The real map is strictly increasing and strictly convex on �. It follows that
1F1,k (an; bn; l) ≥ 1F1,k (an; bn; 0) for any l ≥ 0 and 0 ≤ 1F1,k (an; bn; l) ≤ 1 for any l ≤ 0.

In [24], the authors introduced the k-beta function for more then two variables and
provided some useful representations. Let n > 3 be an integer and E(n–1) be the (n – 1)

simplex of �n–1 described as

E(n–1) =

[(
m1, . . . , m(n–1)

) ∈ �(n–1) :
n–1∑
i=1

mi ≤ 1; mi ≥ 0; for i = 1, . . . , n – 1

]
.

The beta function involving n variables φ1, . . . ,φn > 0 is

βk (φ1, . . . ,φn) =
1

kn–1

∫
(En–1)

n∏
i=1

m
φi
k

i dm1 · · ·dmn–1. (8)

Let

mn = 1 –
n–1∑
i=1

mi

and

σ (l) =
n∑

i=1

(φi),

then (8) can be written as

βk (φ1, . . . ,φn) =
∏n

i=1 �k (φi)

�k (σ (φ))
.

Some other representations of the extended k-beta function are

βk (φ1, . . . ,φn; a) =
1

kn–1

∫

(EN–1)

n∏
i=1

m
φi
k –1

i e
–ak

kπ (m) dm1 · · ·dmn–1 (9)

and

βk (φ1, . . . ,φn; a1, . . . , an) =
1

kn–1

∫

(EN–1)

n∏
i=1

m
φi
k –1

i e
–ak

i
kπ (m) dm1 · · ·dmn–1 (10)

for any φ1, . . . ,φn > 0.
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Now, we defined the k-gamma function for the several variables. Let φ =: (φ1, . . . ,φn) > 0,
α =: (α1, . . . ,αn) > 0, β =: (β1, . . . ,βn) and c = (c1, . . . , cn) ≥ 0. The generalized k-gamma
function is defined by

�k,c(φ) =
∫

(0,∞)n

n∏
i=1

mφi–1
i e–

mk
i

k e
–

ck
i

kmk
i dm. (11)

If c = 0, then

�k,0(φ) =
n∏

i=1

�k (φi) .

Another representation of (11) is

�
(αn ,βn)

k,c (φ) =
∫

(0,∞)n

n∏
i=1

mφi–1
i 1F1,k

(
(αn)i , (βn)i , –

mk
i

k
–

ck
i

kmk
i

)
dm. (12)

If c = 0, then

�
(αn ,βn)

k,0 (l) =
∫

(0,∞)n

n∏
i=1

mφi–1
i 1F1

(
(αn)i ; (βi)n ; –

mk
i

k

)
dm. (13)

If n = 1, then (11) and (12) reduce to (2) and (4), respectively. If αn = βn, then (12) becomes
(11).

2 Main results
In this section, we study the generalized k-beta function of the first kind.

2.1 Generalized beta k function of the first kind
Definition 2.1 Let φ = (φ1, . . . ,φn) > 0, an > 0, bn > 0, η > 0 and ζ ≥ 0. The generalized
k-beta function of first kind is

β
(an ,bn)

ζ ,k (φ; ζ ) =:
1

kn–1

∫

En–1

n∏
i=1

t
φi
k –1

i 1F1,k

(
an, bn; –

ηk

kπ(t)
– ζ k π(t)

ηk

)
dt, (14)

where dt =: dt1 · · ·dtn–1 and π(t) =:
∏n

i=1 ti with tn = 1 –
∑n–1

i=1 ti. If ζ = 0, we obtain

β
(an ,bn)

0,k (φ,η) =
1

kn–1

∫

(En–1)

n∏
i=1

t
φi
k –1

i 1F1,k

(
an, bn; –

ηk

kπ(t)

)
dt. (15)

If n = 2 and ζ = 0, then (14) becomes (3). If an = bn, then (14) is (9).

Proposition 2.1 Let φ = (φ1, . . . ,φn) > 0, an > 0, bn > 0, η > 0 and ζ ≥ 0 with bn – an > 0.
Then, 0 ≤ β

(an ,bn)

ζ ,k ≤ βk(φ) and so β
(an ,bn)

η,k (φ;η) is well-defined.
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Proof With the help of Remark 1.1, we have

0 ≤
n∏

i=n

t
φi
k –1

i 1F1,k

(
an, bn; –

ηk

kπ(t)
– ζ k kπ(t)

ηk

)
≤

n∏
i=1

t
φi
k –1

i . (16)

Integrating (16) over t ∈ En–1 and using (8) and (14), we obtain the required result. �

Now, we discuss our main result, which consists of several generalized inequalities in-
volving β

(an ,bn)

ζ ,k (φ; ζ ).

Theorem 2.1 Let an > 0, bn – an > 0, η > 0 and ζ ≥ 0. Then

(
β

(an ,bn)

ζ ,k (φ + ψ ;η)
)2 ≤ β

(an ,bn)

ζ ,k (2φ;η)β(an ,bn)

ζ ,k (2ψ ;η) (17)

holds for any φ,ψ ∈ (0,∞)n. The real valued function β
(an ,bn)

ζ ,k (φ;η) is convex on (0,∞)n.

Proof Let φ = (φ1, . . . ,φn), ψ = (ψ1, . . . ,ψn) and

λ(t) = 1F1,k

(
an, bn, –

ηk

kπ(t)
– ζ k π(t)

ηk

)
.

As λ(t) ≥ 0, we can write

(
β

(an ,bn)

ζ ,k (φ + ψ ;η)
)2

=
1

kn–1

⎛
⎜⎝

∫

En–1

( n∏
i=1

t
φi
k – 1

2
i

)
(λ(t))

1
2

( n∏
i=1

t
ψi
k – 1

2
i (λ(t))

1
2

)
dt

⎞
⎟⎠

2

.

By the Cauchy-Schwartz inequalities, (17) is obtained.
Now, we have an interesting remark that (17) is equivalent to

β
(an ,bn)

ζ ,k

(
φ + ψ

2
;η

)
≤

(
β

(an ,bn)

ζ ,k (φ;η)β(an ,bn)

ζ ,k (φ;η)
) 1

2 .

Using arithmetic-geometric mean inequality
√

φψ ≤ 1
2φ + 1

2ψ ,

β
(an ,bn)

ζ ,k

(
φ + ψ

2
;η

)
≤ 1

2
β

(an ,bn)

ζ ,k (φ;η) +
1
2
β

(an ,bn)

ζ ,k (φ;η).

This expression shows that φ �−→ β
(an ,bn)

ζ ,k is mid convex. In addition to the fact that φ �−→
β

(an ,bn)

ζ ,k has the continuous property, these facts ensure φ �−→ β
(an ,bn)

ζ ,k is convex. The proof
is complete. �

Lemma 2.1 Let φ > 0, ψ > 0. Then, we have a real valued function w �−→ 1F1,k (an; bn; w),
which is differentiable on � and

d
dw 1F1,k (an; bn; w) =

an

bn
1F1,k (an + k; bn + k; w) . (18)
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If w = 0, we have

d
dw 1F1,k (an; bn; 0) =

an

bn
. (19)

Now, we state the following result.

Theorem 2.2 Let an > 0, bn – an > 0, η > 0 and ζ ≥ 0. Then,

β
(an ,bn)

k (φ;η) –
an

bn

ζ k

ηk β
(an+1,bn+1)

k (φ + ke;η)

≤ β
(an ,bn)

ζ ,k (φ;η) ≤ β
(an ,bn)

k (φ;η) ≤ βk(φ)

is valid for all φ ∈ (0,∞)n, and e =: (1, 1, . . . , 1).

Proof Using Remark 1.1, (14) and (15), we have β
(an ,bn)

ζ ,k (φ;η) ≤ β
(an ,bn)

k (φ;η) ≤ βk(φ). Let
prove the next part of the inequality

β
(an ,bn)

k (φ;η) –
an

bn

ζ k

ηk β
(an+1,bn+1)

k (φ + ke;η) ≤ β
(an ,bn)

ζ ,k (φ;η) (20)

for fixed an, bn – an > 0, and the map b �−→ 1F1,k (an; bn; b) is convex on �. We also have
f : � −→ � a convex function, differentiable at c0, so f (c) ≥ f (c0) + (c – c0) f́ (c0). Applying
this and (18), we have

1F1,k

(
an; bn; –

ηk

kπ(t)
– ζ k π(t)

ηk

)

≥ 1F1,k

(
an; bn; –

ηk

kπ(t)

)
–

an

bn

ζ k

ηk π(t)1F1,k

(
an + 1; bn + 1; –

ηk

kπ(t)

)
. (21)

Next, multiplying (21) by
∏n

i=1 t
φi
k –1, integrating over t ∈ En–1, and using (14) and (15), we

have (20). �

Proposition 2.2 Let an > 0, bn – an > 0, η > 0 and ζ ≥ 0. For φ ∈ (1,∞)n, we have

β
(an ,bn)

ζ ,k (φ;η) ≥ β(φ, k) –
an

bn

ηk

k
βk(φ – ke) –

an

bn

ζ k

ηk βk(φ + ke)

with e = (1, 1, . . . , 1).

Proof Using (19), we have

1F1,k

(
an; bn; –

ηk

kπ(t)
– ζ k π(t)

ηk

)
≥ 1F1,k(an; bn; 0) +

an

bn

(
–

ηk

kπ(t)
– ζ k π(t)

ηk

)
. (22)

Multiplying (22) by
∏n

i=1 t
φi
k –1, the rest of the proof is similar to that of Theorem 2.2. �

Lemma 2.2 We have

sup
t∈En–1

π(t) = x–x.
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Proof Take n positive real numbers c1, c2, . . . , cn and use the arithmetic-geometric mean
inequality n√c1 · · · cn ≤ c1+···+cn

n . Letting c1 = t1, c2 = t2, . . . , cn–1 = tn–1, cn = tn =: 1 – t1 – · · · –
tn–1 in the inequality, we have n√π(t) ≤ 1

n or π(t) ≤ n–n for any t ∈ En–1. This inequality is
an equality for (t1, . . . , tn–1) =

( 1
n , . . . , 1

n
)
. �

We now prove a refinement of the inequality β
(an ,bn)

ζ ,k (φ;η) ≤ βk(φ).

Theorem 2.3 Let an > 0, bn – an > 0, η > 0, ζ ≥ 0 and φ ∈ (0,∞)n. Also assume that η ≥√
ζ . Then,

β
(an ,bn)

ζ ,k (φ;η)

βk(φ)
≤ 1F1,k

(
an; bn; –

ηk

k
nn –

ζ k

ηknn

)
≤ 1F1,k

(
an; bn; –2

√
ζ
)

≤ 1, (23)

where βk(φ) is as defined in (8).

Proof First, we consider the inequality

1F1,k

(
an; bn; –

ηk

k
nn –

ζ k

ηknn

)
≤ 1F1,k

(
an; bn; –2

√
ζ
)

≤ 1.

We are able to verify it easily by considering

–
ηk

k
nn –

ζ k

ηknn ≤ –2
√

ζ ≤ 0, 1F1,k (an; bn; 0) = 1

and w �−→ 1F1,k (an; bn; w) is an increasing real valued function. We will prove the next
part of the inequality

β
(an ,bn)

ζ ,k (φ;η)

βk(φ)
≤ 1F1,k

(
an; bn; –

ηk

k
nn –

ζ k

ηknn

)
. (24)

Using (14), we obtain

β
(an ,bn)

ζ ,k (φ;η) ≤ βk(φ) sup
En–1

1F1,k

(
an; bn; –

ηk

kπ(t)
– ζ k π(t)

ηk

)
. (25)

The supremum exists, and

1F1,k

(
an; bn; –

ηk

kπ(t)
– ζ k π(t)

ηk

)
=

� (bn)

k� (an)� (bn – an)

·
1∫

0

b
an
k –1(1 – b)

bn–an
k –1 exp

[
b
(

–
ηk

kπ(t)
– ζ k π(t)

ηk

)]
db. (26)

It is sufficient to find an upper bond of t �→ – ηk

kπ (t) – ζ k π (t)
ηk . Since b ∈ [0, 1] and the expo-

nential function is increasing, if η ≥ √
ζ and 0 < u < 1, then

sup
0≤s≤u

(
–

ηk

ks
– ζ k s

ηk

)
= –

ηk

ku
– ζ k u

ηk . (27)



Mubeen et al. Journal of Inequalities and Applications        (2024) 2024:144 Page 9 of 17

By Lemma 2.2, π(t) ≤ x–x and so En–1 ⊂ {(t1, . . . , tn–1) : 0 ≤ π(t) ≤ x–x} =: G. This with (27)
implies that

sup
tεEn–1

(
–

ηk

kπ(t)
– ζ k π(t)

ηk

)
≤ sup

t∈G

(
–

ηk

kπ(t)
– ζ k π(t)

ηk

)

= sup
0≤s≤x–x

(
–

ηk

ks
– ζ k s

ηk

)

=
–ηk

k
nn –

ζ k

ηknn .

Substituting into (26) and using (25), we have (24). �

Corollary 2.1 Under the assumptions of Theorem 2.3 for any z > 0, we have

∞∫

0

ηz–1β
(an ,bn)

k (φ;η)dη ≤ βk(φ)n
(
–n–n) z

k
�

(an ,bn)

k (z), (28)

where �
(an ,bn)

k (z) is defined in (13). If z = 1

∞∫

0

β
(an ,bn)

k (φ;η)dη ≤ βk(l)n–n 1
k �(an ,bn)(1).

Proof Taking ζ = 0 in (23), we have

β
(an ,bn)

k (φ;η) ≤ βk(φ) 1F1,k

(
an; bn; –

ηk

k
nn

)
.

Integrating over η ∈ (0,∞) and multiplying by ηz–1, we obtain (28) after a simple change
of variables. �

Next, we state a result dealing with the lower bound of β
(an ,bn)

ζ ,k (φ;η).

Theorem 2.4 Let an > 0, bn – an > 0, η > 0, ζ ≥ 0 and φ ∈ (0,∞). Then,

β
(an ,bn)

ζ ,k (φ;η)

βk(φ;η)
≥ 1F1,k

(
bn – an; b;

ηknn

k

)
exp

(
–

ζ k

ηknn

)
, (29)

where βk(φ;η) is defined in (9).

Proof Using (9), we have

β
(an ,bn)

ζ ,k (φ;η) =
1

kn–1

∫

En–1

n∏
i=1

t
φi
k –1

i exp

(
–

ηk

kπ(t)
– ζ k π(t)

ηk

)

·1F1,k

(
bn – an; bn;

ηk

kπ(t)
+ ζ k π(t)

ηk

)
dt,
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which can be rewritten as

β
(an ,bn)

ζ ,k (φ;η) =
1

kn–1

∫

En–1

( n∏
i=1

t
φi
k –1

i e– ηk
kπ (t)

)
e

– ζkπ (t)
ηk

·1F1,k

(
bn – an; bn;

ηk

kπ(t)
+ ζ k π(t)

ηk

)
dt. (30)

Using Lemma 2.2, we have e
– ζkπ (t)

ηk ≥ e
– ζk

ηk nn and ηk

kπ (t) + ζ k π (t)
ηk ≥ ηk

k nn. Using this in (30)
and with the help of (9), we have (29). �

Corollary 2.2 Under the assumptions of Theorem 2.4, for any z > 0, we have

∞∫

0

rz–1β
(an ,bn)

ζ ,k (φ;η)dr ≥ ηz
(

nn

k

) z
k
�k(z)βk(φ;η) 1F1,k

(
bn – an; bn;

ηkk
n

n)
. (31)

If z = 1, then

∞∫

0

β
(an ,bn)

ζ ,k (φ;η)dr ≥ ηz
(

nn

k

) z
k
βk(φ;η)�k(1) 1F1,k

(
an – bn; bn;

ηkk
n

n)
. (32)

Proof Multiplying (29) by rz–1 and integrating over r ∈ (0,∞), we have

∞∫

0

rz–1β
(an ,bn)

ζ ,k (φ;η)dr

≥ βk(φ;η) 1F1,k

(
an – bn; bn;

ηk

k
nn

) ∞∫

0

rz–1 exp

(
–

ζ k

ηknn

)
dr.

Setting t =
(

krk

ηk nn

) 1
k and making simplification, we obtain (31) and then (32). �

Our next result is as follows.

Theorem 2.5 Let an > 0, bn – an > 0, η > 0, ζ ≥ 0 and φ ∈ (0,∞). Then,

β
(an ,bn)

ζ ,k (φ;η)

βk(φ;η)
≥ 1F1,k

(
an; bn; –

ζ k

ηknn

)
. (33)

Proof Using (6), we have

1F1,k

(
an; bn; –

ηk

kπ(t)
– ζ k π(t)

ηk

)
=

� (bn)

k� (an)� (bn – an)

·
1∫

0

b
an
k –1(1 – b)

bn–an
k –1 exp

(
–b

ηk

kπ(t)

)
exp

(
–bζ k π(t)

ηk

)
db.



Mubeen et al. Journal of Inequalities and Applications        (2024) 2024:144 Page 11 of 17

Using Lemma 2.2,

exp

(
–b

ηk

kπ(t)

)
≥ exp

(
–

ηk

kπ(t)

)

and

exp

(
–bζ k π(t)

ηk

)
≥ exp

(
–b

ζ k

ηknn

)
.

Applying these in

β
(an ,bn)

ζ ,k (φ;η) =
1

kn–1

∫

En–1

n∏
i=1

t
φi
k –1

i 1F1,k

(
an; bn; –

ηk

kπ(t)
– ζ k π(t)

ηk

)
dt,

and using the uniform convergence of the involved integrals, we have

β
(an ,bn)

ζ ,k (φ;η) ≥ 1
kn–1

�(bn)

k� (an)� (bn – an)

·
1∫

0

b
an
k –1(1 – b)

bn–an
k –1 exp

(
–b

ζ k

ηknn

)
db

·
∫

En–1

n∏
i=1

t
φi
k –1

i exp

(
–

ηk

kπ(t)

)
dt.

Hence, (33). �

Corollary 2.3 Under the assumptions of Theorem 2.4, for any z > 0, we have

∞∫

0

ζ z–1β
(an ,bn)

ζ ,k (φ;η)dζ ≥ ηz
(

nn

k

) z
k
βk(φ;η)�(an ,bn)

k (z),

where �
(c,d)
k (z) is defined in (13). If z = 1, then

∞∫

0

β
(an ,bn)

ζ ,k dζ ≥ η

(
nn

k

) 1
k
βk(φ;η)�(an ,bn)

k (1).

Proof Multiplying (33) by vz–1 and integrating over v ∈ (0,∞), we obtain

∞∫

0

ζ z–1β
(an ,bn)

ζ ,k (φ;η)dζ ≥ βk(φ;η)

∞∫

0

ζ z–1
1F1,k

(
an; bn; –

ζ k

ηknn

)
dv.

Setting ζ = ηt
(
nn) 1

k

k
1
K

and simplifying yields the desired result. �
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2.2 Generalized beta k function of the second kind
In this section, we discuss the generalized k-beta function of the second kind. Before de-
scribing its representation, we introduce several notations used throughout this section.
Let φ = (φ1, . . . ,φn), η = (η1, . . . ,ηn), p = (p1, . . . , pn), q = (q1, . . . , qn) and ζ = (ζ1, . . . , ζn).

Definition 2.2 Let φ, p, q,η ∈ (0,∞)n and ζ ∈ [0,∞)n, we define a generalized k-beta
function as

β
(p,q)
ζ ,k (φ;η) =:

1
kn–1

∫

En–1

n∏
i=1

t
φi
k –1

i 1F1,k

(
pi; qi; –

ηk
i

kti
– ζ k

i
ti

f k
i

)
dt, (34)

where dt = (dt1, . . . , dtn–1) and tn = 1 –
∑n–1

i=1 ti. If ζ = 0, then

β (p,q)(φ;η) =:
1

kn–1

∫

En–1

n∏
i=1

t
φi
k –1

i 1F1,k

(
pi; qi; –

ηi
k

kti

)
dt. (35)

If p = q and n = 2, then (35) becomes similar to (1). If p = q and ζ = 0, then (34) is exactly
(10).

Remark 2.1 (34) is well-defined because due to the uniform convergence of the stated
series in (5), we can interchange series and integral defined in (34). Further, such in-
tegrals are uniformly convergent in any compact set included in the interior of En–1.
This allows for differentiation and limit under the integral sign of (34). We may state
limζ→0 β

(p,q)
ζ ,k (φ;η) = β

(p,q)
k (φ;η).

Proposition 2.3 For any p,φ,η ∈ (0,∞)n, we have

βk(φ;η) = lim
ζ→0

β
(p;p)
ζ ,k (φ;η) =: β (p,p)

k (φ;η).

Proof Using (5) and (35), we have for i = 1, 2, . . . , n

1F1,k

(
pi; pi; –

ηk
i

kti

)
=

∞∑
i=1

(
– ηk

i
kti

)m

m!
= e–

ηk
i

kti .

Combining (10) and (34) gives the required result. �

Next, we mention some inequalities involving the described beta function. Our first
result is related to convexity of β

(p,q)
ζ ,k (φ;η).

Theorem 2.6 Let η, p, q – p ∈ (0,∞) and ζ ∈ [0,∞). Then,

(
β

(p,q)
ζ ,k (φ + ψ ;η)

)2 ≤ β
(p,q)
ζ ,k (2φ;η)β (p,q)

ζ ,k (2ψ ;η)

holds for any φ,ψ ∈ (0,∞)n. Therefore, β
(p,q)
ζ ,k (φ;η) is convex on (0,∞)n.

Proof The proof is similar to that of Theorem 2.1. �
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Theorem 2.7 We have

β
(p,q)
ζ ,k (φ;η)

βk(l)
≤

n∏
i=1

e–
ηk

i
k 1F1,k

(
qi – pi; qi;

ηk
i

k
+

ζ k
i

ηk
i

)
,

where βk(φ) is defined in (8).

Proof Since the real valued function l �→ 1F1,k (cn; dn; l) is increasing and 0 < ti ≤ 1, i =
1, . . . , n, we have

β
(p,q)
ζ ,k (φ;η) ≤ 1

kn–1

∫

En–1

n∏
i=1

t
φi
k –1

i 1F1,k

(
pi; qi; –

ηk
i

k
– ζ k

i
ti

ηk
i

)
dt.

Using (7) gives

β
(p,q)
ζ ,k (φ;η) ≤ 1

kn–1

∫

En–1

n∏
i=1

t
φi
k –1

i exp

(
–

ηk
i

kti
–

ζ kti

ηk
i

)

·1F1,k

(
qi – pi; qi;

ηk
i

k
+ ζ k

i
ti

ηi

k)
dt. (36)

It is clear that exp

(
–ηk

i
k

)
– ζ k

i
ti
ηk

i
≤ e

–ηk
i

k and ηk
i

k + ζ k
i

ti
ηk

i
≤ ηk

i
k + ζ k

i
ηk

i
. Using these in (36), we

obtain the desired result. �

Now, we provide a lower bond of the described function.

Theorem 2.8 We have

β
(p,q)
ζ ,k (φ;η)

βk(φ;η)
≥

n∏
i=1

e
–

ζk
i

ηk
i 1F1,k (qi – pi; qi; mi) , (37)

where β(φ;η) is defined in (10) and mi = max

(
2
√

ζ k
i ,ηk

i

)
. If ηk

i ≥
√

ζ k
i , i = 1, . . . , n, then

(37) can be refined as

β
(p,q)
ζ ,k (φ;η)

βk(φ;η)
≥

n∏
i=1

e
–

ζk
i

ηk
i 1F1,k

(
qi – pi; qi;

ηk
i

k
+

ζ k
i

ηk
i

)
. (38)

Proof Using (7) and (34), we obtain

β
(p,q)
ζ ,k (φ;η) =

1
kn–1

∫

En–1

( n∏
i=1

t
ηk

i
k –1

i e–
ηk

i
kti

)
e

–ζ k
i

ti
ηk

i

·1F1,k

(
qi – pi; qi;

ηk
i

kti
+ ζ k

i
ti

ηk
i

)
dt. (39)
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It is easy to see that ηk
i

kti
+ ζ k

i
ti
ηk

i
≥ 2

√
ζ k

i , further 0 < ti < 1, and h �→ 1F1 (an; bn; c) is also

increasing. We have e
–ζ k

i
ti
ηk

i ≥ e
–

ζk
i

ηk
i and

1F1,k

(
qi – pi; qi;

ηk
i

kti
+ ζ k

i
ti

ηk
i

)
≥ 1F1,k

(
qi – pi; qi; max

(
2
√

ζ k
i ,ηk

i

))
.

Substituting into (39) and using (10), we have (37). (η, ζ ) with η ≥ √
ζ k implies

inf
(

ηk

t + ζ k t
ηk

)
= ηk + ζ k

ηk , so (38) refines to (37). The proof is complete. �

We have the next result.

Theorem 2.9 Let φ,η, p, s – p ∈ (0,∞)n. For any z =: (z1, . . . , zn), we have

∫

(0,∞)n

n∏
i=1

ζ
zi–1
i β

(p,q)
ζ ,k (φ;η)dg

≥ βk(φ,η)�k(z)

( n∏
i=1

η
zi
i

1

k
zi
k

) n∏
i=1

1F1,k
(
qi – pi; qi; f k

i
)

, (40)

where dζ =: dζ1 · · ·dζn. If z = e = (1, . . . , 1), then

∫

(0,∞)n

β
(p,q)
ζ ,k (φ;η)dg ≥ βk(φ,η)

( n∏
i=1

η
zi
i

1

k
zi
k

) n∏
i=1

1F1,k
(
qi – pi; qi; f k

i
)

. (41)

Proof Multiply (37) by
∏n

i=1 ζ
zi–1
i and integrate over ζ ∈ (0,∞)n to obtain

∫

(0,∞)n

n∏
i=1

ζ
zi–1
i β

(p,q)
ζ ,k (φ;η)dg

≥ βk(φ;η) 1F1,k
(
qi – pi; qi;ηk

i
) ∫

(0,∞)n

n∏
i=1

ζ
zi–1
i e

–
ζk
i

ηk
i dg.

Setting t =
(

kζ k
i

ηk
i

) 1
k

, i = 1, . . . , n, we have

∫

(0,∞)n

n∏
i=1

ζ
zi–1
i β

(p,q)
ζ ,k (φ;η)dg

≥ βk(φ;η)
n∏

i=1

ηz
i

1
k

z
k

1F1,k
(
qi – pi; qi;ηk

i
) ∫

(0,∞)n

(ti)
zi–1 e–

tk
i
k dt.

Hence (40). Taking zi = 1, i = 1, . . . , n in (40), we have (41). The proof is complete. �

The following result may also be stated.
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Theorem 2.10 Let φ,η, p, q – p ∈ (0,∞)n and ζ ∈ [0,∞). Then,

β
(p,q)
ζ ,k (φ;η)

βk(φ;η)
≥

n∏
i=1

1F1,k

(
pi; qi; –

ζ k
i

ηk
i

)
. (42)

Proof Using (6), we have

1F1,k

(
pi; qi; –

ηk
i

kti
– ζ k

i
ti

ηk
i

)
=

� (qi)

k� (pi) – � (qi – pi)

·
1∫

0

u
ηi
k –1(1 – u)

( qi–pi
k –1

)
e–u

ηk
i

kti e
–uζ k

i
ti
ηk

i du. (43)

Since 0 < ti ≤ 1, i = 1, . . . , n and u ∈ [0, 1], we have e–u
ηk

i
kti ≥ e–

ηk
i

kti and e
–ζ k

i u ti
ηk

i ≥ e
–u

ζk
i

ηk
i . Using

this in (43) and then in (34), we have

β
(p,q)
ζ ,k (φ;η) ≥ 1

kn–1

∫

En–1

n∏
i=1

t
ηi
k –1

i e–
ηk

i
kti dt

n∏
i=1

� (qi)

k� (pi) – � (qi – pi)

·
1∫

0

u
ri
k –1(1 – u)

qi–pi
k –1e

–u
ζk
i

ηk
i du.

This with (10) and (6) yields (42). �

We now turn to our final result.

Theorem 2.11 Let φ,η, q, p – q ∈ (0,∞)n. For any z =: (z1, . . . , zn) ∈ (0,∞)n, we have

∫

(0,∞)n

n∏
i=1

ζ
zi–1
i β

(p,q)
ζ ,k (φ;η)dg ≥ βk(φ;η)�(p,q)

k (z)
n∏

i=1

(
η

zi
i

k
zi
k

)
.

If z = e =: (1, . . . , 1), then

∫

(0,∞)n

β
(p,q)
ζ ,k (φ;η)dg ≥ βk(φ;η)�(p,q)

k (e)
n∏

i=1

ηi.

Proof Similar to the proof of Theorem 2.10. Using (42), we obtain

β
(p,q)
ζ ,k (φ;η) ≥ βk(φ;η)

n∏
i=1

1F1,k

(
pi; qi; –

ζ k
i

ηk
i

)
.

Multiplying by ζ
zi–1
i and integrating over g ∈ (0,∞), we obtain our required result. �
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3 Conclusions
In this note, we presented generalized inequalities involving beta and gamma functions
and their generalizations. Basic representations of beta and gamma functions were in-
cluded, along with representations involving confluent hypergeometric functions. Some
basic relationships between gamma and beta functions have been provided, and refined
inequalities for the extended beta function were introduced. We have also discussed upper
and lower bounds for an extended beta function.
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