Skip to main content

In vitro virucidal activity of the theaflavin-concentrated tea extract TY-1 against influenza A virus

Research Authors
Israa M. A. Mohamed, Haruko Ogawa & Yohei Takeda
Research Abstract

The annual spread of influenza A virus (IAV) infection is a global concern. We examined the IAV-inactivating potential of theaflavin-concentrated tea extract TY-1, which contains abundant polyphenols, including concentrated theaflavins and catechins. TY-1 exhibited concentration- and time-dependent virucidal activity against IAV. Specifically, 5.0 mg/mL TY-1 induced a 1.33 and ≥ 5.17 log10 50% tissue culture infective dose/mL reduction of the viral titer compared with dextrin as the diluent control within 30 min and 6 h reaction time, respectively. The high virucidal activity of TY-1 was attributed to the combined additive activities of multiple virucidal components, including theaflavins, which led to an investigation of the virucidal mechanism of action of TY-1. Western blotting revealed that TY-1 treatment reduced the band intensity of hemagglutinin and induced the appearance of additional high molecular mass bands/ladders. In addition, TY-1 treatment also reduced the band intensity of neuraminidase (NA). A hemagglutination assay revealed that TY-1 reduced hemagglutination activity, and an NA assay revealed reduced NA activity. These results indicated that TY-1 caused structural abnormalities in IAV spike proteins, possibly leading to their destruction. Reverse transcription polymerase chain reaction (PCR) targeting the IAV genome and electron microscopic observation of viral particles revealed that upon application of TY-1, the PCR products dissipated, which indicates that TY-1 destroyed the IAV genome, and the number of viral particles reduced. Overall, TY-1 exhibited multiple modes of IAV-inactivating activity. Our findings support the possible future practical use of TY-1 as a virucidal supplemental agent that can contribute to IAV infection control.

Research Date
Research Department
Research Journal
Journal of Natural Medicines
Research Member
Research Publisher
Springer nature
Research Rank
Q2
Research Vol
76
Research Website
https://link.springer.com/article/10.1007/s11418-021-01568-0#citeas
Research Year
2021
Research Pages
152–160