Skip to main content

Ball Mill, Humic Acid, and Rock Phosphate-Modified Conocarpus Biochar for Efficient Removal of Heavy Metals from Contaminated Water

Research Authors
Mansour S. Alhawas 1, Muhammad Imran Rafique 1, Munir Ahmad 1,* , Mohammad I. Al-Wabel 1,* , Adel R. A. Usman 2, Hamed Ahmed Al-Swadi 1 and Abdullah S. Al-Farraj 1
Research Abstract

An increasing trend of anthropogenic activities such as urbanization and industrialization has resulted in induction and accumulation of various kinds of heavy metals in the environment, which ultimately has disturbed the biogeochemical balance. Therefore, the present study was conducted to probe the efficiency of conocarpus (Conocarpus erectus L.) waste-derived biochar and its modified derivatives for the removal of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) from aqueous solutions. Biochar was produced at 600 °C and modified with humic acid (1:10 w/v ratio) and rock phosphate (0.5:1 w/w ratio). Additionally, produced biochar, as well as humic acid and rock phosphate-modified biochars, were subjected to ball milling separately. Equilibrium and kinetics batch experiments were conducted to investigate heavy metals adsorption on synthesized adsorbents. Adsorption isotherms and kinetics models were employed to explore the adsorption efficiency of produced materials for metals adsorption. Among all the applied adsorbents, ball-milled biochars showed comparatively higher adsorption compared to un-milled biochars. Humic acid and rock phosphate-modified milled biochar showed the highest adsorption capacity for Pb (18.85 mg g−1), while rock phosphate-modified milled biochar showed the highest adsorption capacity for Cu and Zn (24.02 mg g−1 and 187.14 mg g−1), and humic acid modified biochar adsorbed maximum Cd (30.89 mg g−1). Adsorption isotherm study confirmed Freundlich as the best-suited model (R2 = 0.99), while kinetics adsorption was well described by the pseudo-second-order (R2 = 0.99). Hence, it was concluded that ball-milled biochar modified with humic acid and rock phosphate could potentially remove heavy metals from contaminated water

Research Date
Research Department
Research Journal
Sustainability
Research Member
Research Publisher
MDPI
Research Vol
15
Research Website
https://doi.org/10.3390/su151411474
Research Year
2023
Research Pages
11474