Abstract
The utilization of agro-industrial wastes such as whey as raw materials for the production of bio-ethanol is gaining importance as a result of the attractiveness of renewable fuel alternatives due to exhaustion of fossil fuel sources coupled with the positive impact to the environment. Here, we report the isolation of two Kluyveromyces spp. designated as BM4 and P41, able to produce ethanol as main fermentation product from fermenting whey. Three different molecular biological approaches including, the RFLP analysis of the 5.8S-ITS rDNA, the sequence of the 5.8S-ITS rDNA region and the sequence of the D1/D2 domain of the 26S rRNA gene were applied for accurate identification. While RFLP analysis of 5.8S-ITS region failed to accurate the differentiation between the two species, sequencing of this region and D1/D2 region of the 26S rRNA gene verified the identification. PCR amplification and sequence analysis of 5.8S-ITS rRNA and D1/D2 domain of the 26S rRNA genes revealed that the isolates BM4 and P41 were highly related to Kluyveromyces marxianus and Kluyveromyces lactis with homology of 99% for both. In addition, phylogenetic analysis indicated that both BM4 and P41 shared a cluster with K. marxianus and K. lactis, respectively. The fermentative performance of both strains on cheese whey to produce ethanol was evaluated at different parameters such as incubation temperature, initial pH, whey sugar concentrations, and yeast concentrations. Results show that the maximum ethanol productions achieved at pH 4.5 and 35 °C were 5.52% and 5.05% for K. marxianus and K. lactis, respectively. Our results demonstrated that K. marxianus and K. Lactis could be recommended for cheese whey bioremediation in the environment and produce renewable biofuel.
Research Abstract
Research Department
Research Journal
Journal of Genetic Engineering and Biotechnology
Research Member
Research Publisher
sciencedirect
Research Rank
1
Research Vol
Volume 12, Issue 1
Research Website
http://www.sciencedirect.com/science/article/pii/S1687157X1400002X
Research Year
2014
Research Pages
Pages 37–43