Skip to main content

Heavy metal immobilization studies and enhancement in geotechnical properties of cohesive soils by eicp technique.

Research Authors
Moghal AAB, Lateef MA, Mohammed SAS, Ahmad M, Usman ARA, Almajed A
Research Abstract

Soil treatment methods to cope with ever-growing demands of construction industry and environmental aspects are always explored for their suitability in different in-situ conditions. Of late, enzyme induced calcite precipitation (EICP) is gaining importance as a reliable technique to improve soil properties and for contaminant remediation scenarios. In the present work, swelling and permeability characteristics of two native Indian cohesive soils (Black and Red) are explored. Experiments on the sorption and desorption of multiple heavy metals (Cd, Ni and Pb) onto these soils were conducted to understand the sorptive response of the heavy metals. To improve the heavy metal retention capacity and enhance swelling and permeability characteristics, the selected soils were treated with different enzyme solutions. The results revealed that EICP technique could immobilize the heavy metals in selected soils to a significant level and reduce the swelling and permeability. This technique is contaminant selective and performance varies with the nature and type of heavy metal used. Citric acid (C6H8O7) and ethylene diamine tetra-acetic acid (EDTA) were used as extractants in the present study to study the desorption response of heavy metals for different EICP conditions. The results indicate that calcium carbonate (CaCO3) precipitate deposited in the voids of soil has the innate potential in reducing the permeability of soil up to 47-fold and swelling pressure by 4-fold at the end of 21 days of curing period. Reduction in permeability and swell, following EICP treatment can be maintained with one time rinsing of the treated soil in water to avoid dissolution of precipitated CaCO3. Outcomes of this study have revealed that EICP technique can be adopted on selected native soils to reduce swelling and permeability characteristics followed by enhanced contaminant remediation enabling their potential as excellent landfill liner materials.

Research Date
Research Department
Research Journal
Applied Sciences
Research Member
Research Publisher
MDPI
Research Vol
2020 (10)
Research Website
https://www.mdpi.com/2076-3417/10/21/7568
Research Year
2020
Research Pages
7568