Skip to main content

Sources, toxicity potential, and human health risk assessment of heavy metals‑laden soil and dust of urban and suburban areas as affected by industrial and mining activities

Research Authors
Hamed A. Al‑Swadi, Adel R. A. Usman, Abdullah S. Al‑Farraj, Mohammad I. Al‑Wabel, Munir Ahmad1 & Abdulelah Al‑Faraj
Research Abstract

Sources and levels of heavy metals (HMs) in soil and dust of urban and suburban areas in Riyadh (industrial city) and Mahad AD’Dahab (mining area) cities in Saudi Arabia were reported in this study. Additionally, the concentrations of HMs in different soil particle size fractions (> 250, 63–250 and < 63 µm) were reported. Pollution extent, and ecological and human health risks associated with collected soil and dust samples were explored. Contamination levels of HMs were higher in dust as compared to soil samples at all sites. The average integrated potential ecological risk in dust samples of urban area of Mahad AD’Dahab was 139, and thus characterized as a very-high-risk criterion. Enrichment factor (EF), correlation analyses, and principal component analysis showed that aluminum (Al), cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), titanium (Ti), and zinc (Zn) had mainly the lithogenic occurrence (EF < 2). However, Zn, copper (Cu), and lead (Pb) in Riyadh, and cadmium (Cd), Cu, Zn, and Pb in the Mahad AD’Dahab were affected by industrial and mining activities, respectively, that were of anthropogenic origins (EF > 2). The hazard index values of dust and soil (< 63 µm) samples in both urban and suburban areas in Mahad AD’Dahab were > 1, suggesting non-carcinogenic risk. Therefore, the dust and soil samples from the mined area of Mahad AD’Dahab had a higher pollution levels, as well as ecological and human health risks than those from Riyadh. Hence, the pollution of such residential environments with HMs (especially Cd, Cu, Zn, and Pb) needs to be monitored.

Research Date
Research Department
Research Member
Research Publisher
Nature Portfolio
Research Vol
12
Research Website
https://www.nature.com/articles/s41598-022-12345-8
Research Year
2022
Research Pages
8972