Skip to main content

Tanrt2. 1-6b is a dual-affinity nitrate transporter contributing to nitrogen uptake in bread wheat under both nitrogen deficiency and sufficiency

Research Authors
Mengjiao Li, Tian Wang, Hui Zhang, Shuo Liu, Wenhu Li, Salah F Abou Elwafa, Hui Tian
Research Abstract

Multiple nitrate transporter (NRT) genes exist in the genome of bread wheat, and it is of great importance to identify the elite NRT genes for N-efficient wheat cultivar breeding. A candidate gene association study (CGAS) of six N use efficiency (NUE) related traits (grain N concentration (GNC), straw N concentration (SNC), grain yield (GY), grain N accumulation (GNA), shoot total N accumulation (STN) and N harvest index (NHI)) was performed based on SNPs in 46 NRT2 genes using a panel composed of 286 wheat cultivars. CGAS identified TaNRT2.1-6B as an elite NRT gene that is significantly associated with four (NHI, SNC, GNA and GY) of the six NUE-related traits simultaneously. TaNRT2.1-6B is located on the plasma membrane and acts as a dual-affinity NRT. The overexpression of TaNRT2.1-6B increased the N influx and root growth of wheat, whereas gene silence lines resulted in the opposite effects. The overexpression of TaNRT2.1-6B also improved GY and N accumulation of wheat under either limited or sufficient N conditions. The data provide the TaNRT2.1-6B gene and the two associated SNP markers as promising powerful tools for breeding wheat cultivars with high N uptake ability and NUE.

Research Date
Research Department
Research Journal
The Crop Journal
Research Publisher
Elsevier
Research Rank
Q1
Research Vol
10
Research Website
https://www.sciencedirect.com/science/article/pii/S2214514122000034
Research Year
2022
Research Pages
993-1005