Skip to main content

Accurate Characterization for Continuous-Time Linear Equalization in CMOS Optical Receivers

Research Authors
D. Abdelrahman and M. Atef
Research Department
Research Year
2022
Research Journal
IEEE Access
Research Publisher
IEEE
Research Vol
10
Research Website
https://ieeexplore.ieee.org/document/9978293
Research Abstract

Recently published CMOS optical receivers consist of a limited-bandwidth first-stage transimpedance amplifier (TIA) followed by an equalizer. Limiting the TIA’s bandwidth improves the gain and reduces the noise but introduces a significant inter-symbol interference (ISI) that is dealt with by the subsequent equalizer. Continuous-time linear equalizer (CTLE) is a commonly used equalizer in both electrical and optical links. However, recent research reported different findings about CTLE-based optical receivers. Some research papers concluded that CTLEs boost high-frequency noise compared to a full-bandwidth design. Other publications reported that high-frequency noise remains unaffected while white noise is significantly reduced. This work aims to solve this discrepancy by presenting an accurate analysis for CTLE-based optical receivers considering noise, gain, and jitter. We show that the noise performance depends on the pole/zero locations of the limited-bandwidth (LBW)-TIA and the follow-on equalizer. A properly designed CTLE-based receiver achieves a 2.5× higher gain and a 1.74× better noise than the full-bandwidth design. The CTLE is also compared to the well-known decision feedback equalizer (DFE). The noise performance of the CTLE-based receiver lies between that of finite and infinite impulse response DFE-based receivers but achieves better gain than both architectures.