Skip to main content

KIM-1 and GADDI-153 gene expression in paracetamol-induced acute kidney injury: effects of N-acetylcysteine, N-acetylmethionine, and N-acetylglucosamine

Research Authors
Nahed A. Mohamed, Mohammed H. Hassan, Tahia H. Saleem, Sotohy A. Mohamed, Marwa El-Zeftawy, Eman A. Ahmed, Nashwa A. M. Mostafa, Helal F. Hetta, Al Shaimaa Hasan and Ahmed Alamir Mahmoud Abdallah
Research Date
Research Department
Research Journal
Turkish Journal of Biochemistry
Research Publisher
De Gruyter
Research Rank
1
Research Year
2021
Research_Pages
1-8
Research Abstract

Objectives: Acute kidney injury (AKI) is a critical clinical event characterized by a reduction in the excretory function of the kidneys. N-acetylcysteine (NAC), N-acetylmethionine (NAM) and N-acetylglucosamine (NAG) are antioxidants with scanty known genetic mechanisms. We aimed to assess both kidney injury molecule-1 (KIM-1) and growth-arrested DNA damage-inducible gene-153 (GADD-153) genes expression in paracetamol (PA) induced AKI. Also, to recognize whether NAC, NAM and/or NAG have roles in altering the expression of these genes for ameliorating the AKI induced by PA. Methods: The present preliminary study achieved the AKI model by oral administration of PA therapeutic dose for 15 days in experimental male rats. Serum urea, creatinine, and renal oxidative stress parameters were analyzed. Genetic expression of KIM-1 and GADD-153 were determined using real time-PCR. Results: Significant elevations of serum urea, creatinine and nitric oxide in renal tissue after PA administration; however, total thiol content was reduced. In addition, both KIM-1 and GADD-153 were upregulated. These biochemical alterations were improved after using NAC and partially after NAM; however, NAG had little effect. Conclusions: Up-regulation of both KIM-1 and GADD-153 occur in AKI induced by PA, which was significantly reversed by NAC.