β-Peptides made from L-aspartic acid monomers form a new class of β3-peptides. Here we report the first three-dimensional NMR solution structure of a β3-hexapeptide (1) from L-aspartic acid monomers in 2,2,2-trifluoroethanol (TFE). We show that 1 forms a right-handed 14-helical structure in TFE. α-peptides from naturally occurring L-amino acids adopt a right-handed α-helix whereas β3-peptides formed from β3-amino acids derived from naturally occurring L-amino acids form left-handed 14-helices. The right-handed 14-helical conformation of 1 is a better mimic of α-peptide conformations. Using the NMR structure of 1 in TFE, we further study the conformation of 1 in water, as well as two similar β3-peptides (2 and 3) in water and TFE by molecular dynamics (MD) simulations. NMR and MD results suggest loss of secondary structure of 1 in water and show that it forms a fully extended structure. 2 and 3 contain residues with oppositely charged side chains that engage in salt-bridge interactions and dramatically stabilize the 14-helical conformation in aqueous media.
Research Department	
              
          Research Journal	
              Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics
          Research Publisher	
              Elsevier
          Research Rank	
              1
          Research Vol	
              1784(4)
          Research Website	
              NULL
          Research Year	
              2008
          Research Member	
          
      Research Abstract	
               
 
 
          