Skip to main content

Ivermectin detection using Ag@ B, S co-doped reduced graphene oxide nanohybrid

Research Authors
Mater H.Mahnashi, Ashraf M. Mahmoud, Saad A. Alkahtani, Mohamed M. El-Wekil
Research Date
Research Journal
Journal of Alloys and Compounds
Research Publisher
ElSevier
Research Rank
Q1
Research Vol
871
Research Year
2021
Research Abstract

Silver nanoparticles (AgNPs) modified boron and sulfur co-doped reduced graphene oxide (B, S@rGO) were prepared by one-pot hydrothermal method for the first time. The combination between AgNPs and B, S@rGO decreases stacking of B, S@rGO and decreases the particle size of AgNPs; in addition, it enhances the effective surface area and electro-catalytic activities of the nanocomposite. The morphology and structure of AgNPs/B, S@rGO were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron microscope (XPS), Raman spectroscopy, UV-Vis spectroscopy, thermogravimetric analysis (TGA), and Brunauer–Emmett–Teller (BET). The electro-catalytic activity of AgNPs/B, S@rGO was studied using cyclic voltammetry (CV), electron impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Because of the synergetic effects of AgNPs and B, S@rGO, the modified electrode displayed considerably enhanced sensitivity to ivermectin (IVM) determination. The voltammetric response is linear over the range of 0.3–60.0 nM with LOD (S/N = 3) of 0.1 nM. The proposed sensor exhibited good selectivity, reproducibility, and long-term stability. The modified electrode was used to analyze IVM in injections, urine, and tap-water with recoveries % of 99.6–105.8% and RSDs of 2.14–3.65%.