Skip to main content

Fabrication of sand-based novel adsorbents embedded with biochar or binding agents via calcite precipitation for sulfathiazole scavenging

Research Authors
Almajed A, Ahmad M, Usman ARA, Al-Wabel MI
Research Abstract

Fabrication of efficient and low-cost adsorbents through enzyme induced carbonate precipitation (EICP) of sand embedded with binding agents for sulfathiazole (STZ) removal is reported for the first time. Sand enriched with biochar (300 °C, 500 °C, and 700 °C), xanthan gum, guar gum, bentonite, or sodium alginate (1% w/w ratios) was cemented via EICP technique. Enrichment with binding agents decreased the unconfined compressive strength, improved the porosity, and induced functional groups. Biochar enrichment reduced the pH, and increased the calcite contents and electrical conductivity. Fixed-bed column adsorption trials revealed that biochars enrichment resulted in the highest STZ removal (64.7–87.9%) from water at initial STZ concentration of 50 mg L−1, than the adsorbents enriched with other binding agents. Yoon–Nelson and Thomas kinetic models were fitted well to the adsorption data (R2 = 0.91–0.98). The adsorbents embedded with 700 °C biochar (BC7) exhibited the highest Yoon–Nelson rate constants (0.087 L min−1), 50% breakthrough time (58.056 min), and Thomas model-predicted maximum adsorption capacity (4.925 mg g−1). Overall, BC7 removed 168% higher STZ from water than pristine cemented sand. Post-adsorption XRD and FTIR analyses suggested the binding of STZ onto the adsorbents. π–π electron-donor-acceptor interactions, aided-by electrostatic interactions and H-bonding were the main STZ adsorption mechanisms.

Research Date
Research Department
Research Journal
Journal of Hazardous Materials
Research Member
Research Publisher
Elsevier
Research Vol
405
Research Website
https://www.sciencedirect.com/science/article/abs/pii/S0304389420322391
Research Year
2021
Research Pages
124249