Skip to main content

On multivariate truncated generalized Cauchy distribution

Research Authors
Mah , S.F Ateya
Research Abstract

 In this paper, a multivariate form of truncated generalized Cauchy distribution (TGCD), which is denoted by (MVTGCD), is introduced. The joint density function, conditional density function, moment generating function, and mixed moments of the order are obtained. Making use of the mixed moments formula, skewness and kurtosis in case of the bivariate case are obtained. Also, all parameters of the distribution are estimated using the maximum likelihood and Ba- yes methods. A real data set is introduced and analyzed using three models. The first model is the bivariate Cauchy distribution, the second is the truncated bivariate Cauchy distribution and the third is the bivariate truncated generalized Cauchy distribution. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (K–S) test statistic to emphasize that the bivariate truncated generalized Cauchy model fits the data better than the other models. 

Research Date
Research Department
Research Journal
Statistical Papers
Research Member
Research Rank
1
Research Year
2013