Skip to main content

Non-classicality in an open two-mode parametric amplifier cavity containing aΛ-qutrit system

Research Authors
A-B A Mohamed and H A Hessian
Research Abstract

In the presented paper, we introduce an analytical description for a dissipative two-mode parametric amplifier coherent cavity containing a three-level system (qutrit). Based on normalized correlation function, Q-function and its associated Wehrl entropy, the dynamics of the quantum phenomena: two-mode cavity non-classically, qutrit phase space information, and quantum coherence are investigated under the physical parameters: qutrit-cavity interactions, initial coherent intensity, and the dissipation. It is found that the generated quantum phenomena, due to the qutrit-cavity interaction, depend on the physical parameters of the initial states and the dissipation. The robustness of the quantum phenomena against the dissipation can be enhanced by decreasing the initial coherent intensity cavity. The stability and strength of the generated bunching/anti-bunching behaviour can be controlled by the cavity dissipation.

Research Date
Research Department
Research Journal
Phys. Scr.
Research Member