Skip to main content

Paleoenvironmental and sea level changes across the Paleocene-lower Eocene interval at the central and southwestern Sinai, Egypt

Research Authors
Azza A. Mohamed, Nageh A. Obaidalla, Abdelhamid M. Salman, Kamel H. Mahfouz, Amr A. Metwally
Research Abstract

Detailed stratigraphic studies of the Paleocene-lower Eocene interval were conducted on four stratigraphic successions (Sudr-Alhitan, Thamad, Abu-Qada, and Nukhul) in central and southwestern Sinai. These sections are arranged along a North-South direction as: Sudr-Alhitan, Thamad, Abu-Qada, and Nukhul. The biostratigraphic framework was achieved by integrating data of calcareous nannofossils and planktonic foraminifera. The studied area experienced two major tectonic events, most likely related to the Syrian Arc System (SAS), which led to two distinct hiatuses of significant magnitude, evidenced from integrated biostratigraphic analysis and thorough field observations. Benthic foraminifera assemblages suggest a deposition in outer neritic to upper bathyal setting for investigated sites, except for the Tarawan and Thebes formations in Abu-Qada and Sudr-Alhitan sections, which were deposited in middle-outer neritic and outer neritic settings, respectively. Benthic foraminiferal indices indicate an oligo-mesotrophic environment associated with oxic/suboxic conditions at the bottom of the seawater for the studied interval. Low oxygen levels and mesotrophic conditions were seen to mark the Paleocene Eocene Thermal Maximum event, as evidenced by the organic-rich laminated sediment, low benthic foraminiferal indices, and the occurrence of agglutinated taxa Repmanina charoides and Ammobaculites spp., which reflects a major change in food supply. The obtained sequence stratigraphic framework shows that the depositional record of the studied area is significantly influenced by both the regional tectonics and eustatic sea level.

Research Date
Research Department
Research Journal
Journal of African Earth Sciences
Research Publisher
Elsevier
Research Vol
222
Research Year
2025
Research Pages
105483