Skip to main content

ZnO-based nanocomposites for hydrogen generation via hydrolysis of Borohydride

Research Authors
NA Althubiti, TA Taha, AA Azab, HN Abdelhamid
Research Abstract

Hydrogen storage and release using a solid-state material e.g., sodium borohydride (NaBH4) may fulfill the requirements for the ‘Hydrogen Economy’. This study reported ZnO-based materials for hydrogen release via the hydrolysis of NaBH4. Two different metal oxides e.g. CeO2 and TiO2 with different weight loading (5 wt.% and 10 wt.%) were used during the synthesis via a simple combustion method. The synthesis procedure offered nanocomposites consisting of ZnO-xTiO2, and ZnO-xCeO2 (x = 5 wt.% or 10 wt.%). Diffraction techniques (X-ray (XRD) and electron diffraction (ED)) confirm the phase purity of the material. Diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy characterized the optical properties of the materials. The materials displayed a hydrogen generation rate (HGR) of 3000 mL·min−1·gcat−1. Thermodynamic analysis revealed that ZnO, ZnO-10TiO2, and ZnO-10CeO2 catalysts have activation energies of 59.8, 36.8, and 27.5 kJ·mol−1, respectively.

Research Date
Research Department
Research Member
Research Publisher
Springer Nature
Research Rank
Q1
Research Vol
106
Research Website
https://link.springer.com/article/10.1007/s10971-023-06099-6
Research Year
2023
Research Pages
837–846